Laminar Flow Theory


Download Laminar Flow Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Laminar Flow Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Viscous Flow Theory


Viscous Flow Theory

Author: Shih-I. Pai

language: en

Publisher:

Release Date: 1956


DOWNLOAD





Laminar Flow and Convective Transport Processes


Laminar Flow and Convective Transport Processes

Author: Howard Brenner

language: en

Publisher: Elsevier

Release Date: 2013-10-22


DOWNLOAD





Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis presents analytic methods for the solution of fluid mechanics and convective transport processes, all in the laminar flow regime. This book brings together the results of almost 30 years of research on the use of nondimensionalization, scaling principles, and asymptotic analysis into a comprehensive form suitable for presentation in a core graduate-level course on fluid mechanics and the convective transport of heat. A considerable amount of material on viscous-dominated flows is covered. A unique feature of this book is its emphasis on scaling principles and the use of asymptotic methods, both as a means of solution and as a basis for qualitative understanding of the correlations that exist between independent and dependent dimensionless parameters in transport processes. Laminar Flow and Convective Transport Processes is suitable for use as a textbook for graduate courses in fluid mechanics and transport phenomena and also as a reference for researchers in the field.

Laminar Flow Theory


Laminar Flow Theory

Author: P. A. Lagerstrom

language: en

Publisher: Princeton University Press

Release Date: 1996-06-02


DOWNLOAD





Fluid mechanics is one of the greatest accomplishments of classical physics. The Navier-Stokes equations, first derived in the eighteenth century, serve as an accurate mathematical model with which to describe the flow of a broad class of real fluids. Not only is the subject of interest to mathematicians and physicists, but it is also indispensable to mechanical, aeronautical, and chemical engineers, who have to apply the equations to real-world examples, such as the flow of air around an aircraft wing or the motion of liquid droplets in a suspension. In this book, which first appeared in a comprehensive collection of essays entitled The Theory of Laminar Flows (Princeton, 1964), P. A. Lagerstrom imparts the essential theoretical framework of laminar flows to the reader. A concise and elegant description, Lagerstrom's work remains a model piece of writing and has much to offer today's reader seeking an introduction to the flow of nonturbulent fluids. Beginning with the conservation laws that result in the equation of continuity, the Navier-Stokes equation, and the energy transport equation, Lagerstrom moves on to consider viscous waves, low Reynolds-number approximations such as Stokes flow and the Oseen equations, and then high Reynolds-number approximations that are used to describe boundary layers, jets, and wakes. Finally, he examines some compressibility effects, such as those that occur in the laminar boundary layer around a flat plate, both with and without a pressure gradient.