Knowledge Driven Multimedia Information Extraction And Ontology Evolution

Download Knowledge Driven Multimedia Information Extraction And Ontology Evolution PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Knowledge Driven Multimedia Information Extraction And Ontology Evolution book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Knowledge-Driven Multimedia Information Extraction and Ontology Evolution

Author: Georgios Paliouras
language: en
Publisher: Springer Science & Business Media
Release Date: 2011-05-19
This book presents the state of the art in the areas of ontology evolution and knowledge-driven multimedia information extraction, placing an emphasis on how the two can be combined to bridge the semantic gap. This was also the goal of the EC-sponsored BOEMIE (Bootstrapping Ontology Evolution with Multimedia Information Extraction) project, to which the authors of this book have all contributed. The book addresses researchers and practitioners in the field of computer science and more specifically in knowledge representation and management, ontology evolution, and information extraction from multimedia data. It may also constitute an excellent guide to students attending courses within a computer science study program, addressing information processing and extraction from any type of media (text, images, and video). Among other things, the book gives concrete examples of how several of the methods discussed can be applied to athletics (track and field) events.
Knowledge-Driven Multimedia Information Extraction and Ontology Evolution

This book presents the state of the art in the areas of ontology evolution and knowledge-driven multimedia information extraction, placing an emphasis on how the two can be combined to bridge the semantic gap. This was also the goal of the EC-sponsored BOEMIE (Bootstrapping Ontology Evolution with Multimedia Information Extraction) project, to which the authors of this book have all contributed. The book addresses researchers and practitioners in the field of computer science and more specifically in knowledge representation and management, ontology evolution, and information extraction from multimedia data. It may also constitute an excellent guide to students attending courses within a computer science study program, addressing information processing and extraction from any type of media (text, images, and video). Among other things, the book gives concrete examples of how several of the methods discussed can be applied to athletics (track and field) events.
Advanced Metaheuristic Methods in Big Data Retrieval and Analytics

The amount of data shared and stored on the web and other document repositories is steadily on the rise. Unfortunately, this growth increases inefficiencies and difficulties when trying to find the most relevant and up-to-date information due to unstructured data. Advanced Metaheuristic Methods in Big Data Retrieval and Analytics examines metaheuristic techniques as an important alternative model for solving complex problems that are not treatable by deterministic methods. Recent studies suggest that IR and biomimicry can be used together for several application problems in big data and internet of things, especially when conventional methods would be too expensive or difficult to implement. Featuring coverage on a broad range of topics such as ontology, plagiarism detection, and machine learning, this book is ideally designed for engineers, graduate students, IT professionals, and academicians seeking an overview of new trends in information retrieval in big data.