Klasifikasi Text Spam Menggunakan Metode Support Vector Machine Dan Na Ve Bayes


Download Klasifikasi Text Spam Menggunakan Metode Support Vector Machine Dan Na Ve Bayes PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Klasifikasi Text Spam Menggunakan Metode Support Vector Machine Dan Na Ve Bayes book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

KLASIFIKASI TEXT SPAM MENGGUNAKAN METODE SUPPORT VECTOR MACHINE DAN NAÏVE BAYES


KLASIFIKASI TEXT SPAM MENGGUNAKAN METODE SUPPORT VECTOR MACHINE DAN NAÏVE BAYES

Author: Moch Arifqi Ramadhan

language: id

Publisher: Penerbit Buku Pedia

Release Date: 2022-11-08


DOWNLOAD





Spam merupakan teks pesan elektronik yang tidak diinginkan atau diminta serta tanpa adanya persetujuan penerimanya, sehingga dapat melanggar privasi dan hukum dalam bentuk penyalahgunaan data pribadi tanpa persetujuan yang dapat mengakibatkan kerugian. Pengiriman informasi yang terindikasi melakukan spam (spammer) dapat dilakukan secara sengaja dengan mengirimkan pesan spam untuk berbuat kejahatan atau melakukan kegiatan untuk mempromosikan suatu produk. Untuk meminimalisir ketidaknyamanan dan tindak kejahatan yang disebabkan oleh pesan spam maka pengklasifikasian untuk menentukan pesan spam dan bukan pesan spam (ham). Dengan adanya permasalahan tersebut maka penulis melakukan analisis perbandingan dari dua metode klasifikasi yaitu metode support vector machine dan naïve bayes untuk klasifikasi pesan spam dengan menggunakan machine learning dan Confussion Matrix. Dari penetlitian di dapatkan hasil bahwa akurasi tertinggi yaitu metode Naïve Bayes dengan hasil 94%.

On Email Spam Filtering Using Support Vector Machine


On Email Spam Filtering Using Support Vector Machine

Author: Ola Amayri

language: en

Publisher:

Release Date: 2009


DOWNLOAD





K-spectrum Support Vector Machine Classifier for Spam Filtering


K-spectrum Support Vector Machine Classifier for Spam Filtering

Author: Ming Yang

language: en

Publisher:

Release Date: 2013


DOWNLOAD





"Traditionally machine learning approaches including Support Vector Machine (SVM) for spam filtering use the bag of words text representation technique to represent its features. However, this technique does not take the word order information into account and is not suitable for languages that do not use white spaces as word delimiters. Therefore, it is appealing to treat every email as a string of symbols by using a string-based approach. In this report, we implement a contiguous string-based approach, which is called kspectrum kernel, for use with SVM in a discriminative approach to the spam classification problem. When using the k-spectrum SVM spam classifier, email texts are implicitly mapped into a high-dimensional feature space. The classifier produces a decision boundary in this feature space, and emails are classified based on whether they map to the positive (spam) or negative side (non-spam) of the boundary. Our experimental results demonstrate that the k-spectrum SVM spam classifier could offer an effective and accurate alternative to other approaches of spam filtering, such as generally used approaches including Naive Baysian and SVM classifier that is based Bag-ofWords (BOW)."--Page ii.