Keras 2 X Projects


Download Keras 2 X Projects PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Keras 2 X Projects book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Keras 2.x Projects


Keras 2.x Projects

Author: Giuseppe Ciaburro

language: en

Publisher: Packt Publishing Ltd

Release Date: 2018-12-31


DOWNLOAD





Demonstrate fundamentals of Deep Learning and neural network methodologies using Keras 2.x Key FeaturesExperimental projects showcasing the implementation of high-performance deep learning models with Keras.Use-cases across reinforcement learning, natural language processing, GANs and computer vision.Build strong fundamentals of Keras in the area of deep learning and artificial intelligence.Book Description Keras 2.x Projects explains how to leverage the power of Keras to build and train state-of-the-art deep learning models through a series of practical projects that look at a range of real-world application areas. To begin with, you will quickly set up a deep learning environment by installing the Keras library. Through each of the projects, you will explore and learn the advanced concepts of deep learning and will learn how to compute and run your deep learning models using the advanced offerings of Keras. You will train fully-connected multilayer networks, convolutional neural networks, recurrent neural networks, autoencoders and generative adversarial networks using real-world training datasets. The projects you will undertake are all based on real-world scenarios of all complexity levels, covering topics such as language recognition, stock volatility, energy consumption prediction, faster object classification for self-driving vehicles, and more. By the end of this book, you will be well versed with deep learning and its implementation with Keras. You will have all the knowledge you need to train your own deep learning models to solve different kinds of problems. What you will learnApply regression methods to your data and understand how the regression algorithm worksUnderstand the basic concepts of classification methods and how to implement them in the Keras environmentImport and organize data for neural network classification analysisLearn about the role of rectified linear units in the Keras network architectureImplement a recurrent neural network to classify the sentiment of sentences from movie reviewsSet the embedding layer and the tensor sizes of a networkWho this book is for If you are a data scientist, machine learning engineer, deep learning practitioner or an AI engineer who wants to build speedy intelligent applications with minimal lines of codes, then this book is the best fit for you. Sound knowledge of machine learning and basic familiarity with Keras library would be useful.

Project-Based Approach On DEEP LEARNING Using Scikit-Learn, Keras, And TensorFlow with Python GUI


Project-Based Approach On DEEP LEARNING Using Scikit-Learn, Keras, And TensorFlow with Python GUI

Author: Vivian Siahaan

language: en

Publisher: BALIGE PUBLISHING

Release Date: 2023-06-19


DOWNLOAD





In this book, implement deep learning on detecting vehicle license plates, recognizing sign language, and detecting surface crack using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting vehicle license plates using Car License Plate Detection dataset provided by Kaggle (https://www.kaggle.com/andrewmvd/car-plate-detection/download). To perform license plate detection, these steps are taken: 1. Dataset Preparation: Extract the dataset and organize it into separate folders for images and annotations. The annotations should contain bounding box coordinates for license plate regions.; 2. Data Preprocessing: Load the images and annotations from the dataset. Preprocess the images by resizing, normalizing, or applying any other necessary transformations. Convert the annotation bounding box coordinates to the appropriate format for training.; 3. Training Data Generation: Divide the dataset into training and validation sets. Generate training data by augmenting the images and annotations (e.g., flipping, rotating, zooming). Create data generators or data loaders to efficiently load the training data.; 4. Model Development: Choose a suitable deep learning model architecture for license plate detection, such as a convolutional neural network (CNN). Use TensorFlow and Keras to develop the model architecture. Compile the model with appropriate loss functions and optimization algorithms.; 5. Model Training: Train the model using the prepared training data. Monitor the training process by tracking metrics like loss and accuracy. Adjust the hyperparameters or model architecture as needed to improve performance.; 6. Model Evaluation: Evaluate the trained model using the validation set. Calculate relevant metrics like precision, recall, and F1 score. Make any necessary adjustments to the model based on the evaluation results.; 7. License Plate Detection: Use the trained model to detect license plates in new images. Apply any post-processing techniques to refine the detected regions. Extract the license plate regions and further process them if needed. In chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform sign language recognition using Sign Language Digits Dataset. Here are the steps to perform sign language recognition using the Sign Language Digits Dataset: 1. Download the dataset from Kaggle: You can visit the Kaggle Sign Language Digits Dataset page (https://www.kaggle.com/ardamavi/sign-language-digits-dataset) and download the dataset.; 2. Extract the dataset: After downloading the dataset, extract the contents from the downloaded zip file to a suitable location on your local machine.; 3.Load the dataset: The dataset consists of two parts - images and a CSV file containing the corresponding labels. The images are stored in a folder, and the CSV file contains the image paths and labels.; 4. Preprocess the dataset: Depending on the specific requirements of your model, you may need to preprocess the dataset. This can include tasks such as resizing images, converting labels to numerical format, normalizing pixel values, or splitting the dataset into training and testing sets.; 5. Build a machine learning model: Use libraries such as TensorFlow and Keras to build a sign language recognition model. This typically involves designing the architecture of the model, compiling it with suitable loss functions and optimizers, and training the model on the preprocessed dataset.; 6. Evaluate the model: After training the model, evaluate its performance using appropriate evaluation metrics. This can help you understand how well the model is performing on the sign language recognition task.; 7. Make predictions: Once the model is trained and evaluated, you can use it to make predictions on new sign language images. Pass the image through the model, and it will predict the corresponding sign language digit. In chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting surface crack using Surface Crack Detection provided by Kaggle (https://www.kaggle.com/arunrk7/surface-crack-detection/download). Here's a general outline of the process: Data Preparation: Start by downloading the dataset from the Kaggle link you provided. Extract the dataset and organize it into appropriate folders (e.g., training and testing folders).; Import Libraries: Begin by importing the necessary libraries, including TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, and NumPy.; Data Loading and Preprocessing: Load the images and labels from the dataset. Since the dataset may come in different formats, it's essential to understand its structure and adjust the code accordingly. Use OpenCV to read the images and Pandas to load the labels.; Data Augmentation: Perform data augmentation techniques such as rotation, flipping, and scaling to increase the diversity of the training data and prevent overfitting. You can use the ImageDataGenerator class from Keras for this purpose.; Model Building: Define your neural network architecture using the Keras API with TensorFlow backend. You can start with a simple architecture like a convolutional neural network (CNN). Experiment with different architectures to achieve better performance.; Model Compilation: Compile your model by specifying the loss function, optimizer, and evaluation metric. For a binary classification problem like crack detection, you can use binary cross-entropy as the loss function and Adam as the optimizer.; Model Training: Train your model on the prepared dataset using the fit() method. Split your data into training and validation sets using train_test_split() from Scikit-Learn. Monitor the training progress and adjust hyperparameters as needed. Model Evaluation: Evaluate the performance of your trained model on the test set. Use appropriate evaluation metrics such as accuracy, precision, recall, and F1 score. Scikit-Learn provides functions for calculating these metrics.; Model Prediction: Use the trained model to predict crack detection on new unseen images. Load the test images, preprocess them if necessary, and use the trained model to make predictions.

Neural Networks with Keras Cookbook


Neural Networks with Keras Cookbook

Author: V Kishore Ayyadevara

language: en

Publisher: Packt Publishing Ltd

Release Date: 2019-02-28


DOWNLOAD





Implement neural network architectures by building them from scratch for multiple real-world applications. Key FeaturesFrom scratch, build multiple neural network architectures such as CNN, RNN, LSTM in KerasDiscover tips and tricks for designing a robust neural network to solve real-world problemsGraduate from understanding the working details of neural networks and master the art of fine-tuning themBook Description This book will take you from the basics of neural networks to advanced implementations of architectures using a recipe-based approach. We will learn about how neural networks work and the impact of various hyper parameters on a network's accuracy along with leveraging neural networks for structured and unstructured data. Later, we will learn how to classify and detect objects in images. We will also learn to use transfer learning for multiple applications, including a self-driving car using Convolutional Neural Networks. We will generate images while leveraging GANs and also by performing image encoding. Additionally, we will perform text analysis using word vector based techniques. Later, we will use Recurrent Neural Networks and LSTM to implement chatbot and Machine Translation systems. Finally, you will learn about transcribing images, audio, and generating captions and also use Deep Q-learning to build an agent that plays Space Invaders game. By the end of this book, you will have developed the skills to choose and customize multiple neural network architectures for various deep learning problems you might encounter. What you will learnBuild multiple advanced neural network architectures from scratchExplore transfer learning to perform object detection and classificationBuild self-driving car applications using instance and semantic segmentationUnderstand data encoding for image, text and recommender systemsImplement text analysis using sequence-to-sequence learningLeverage a combination of CNN and RNN to perform end-to-end learningBuild agents to play games using deep Q-learningWho this book is for This intermediate-level book targets beginners and intermediate-level machine learning practitioners and data scientists who have just started their journey with neural networks. This book is for those who are looking for resources to help them navigate through the various neural network architectures; you'll build multiple architectures, with concomitant case studies ordered by the complexity of the problem. A basic understanding of Python programming and a familiarity with basic machine learning are all you need to get started with this book.