Kdd 96

Download Kdd 96 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Kdd 96 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Logic Programming

The themes of the 1997 conference are new theoretical and practical accomplishments in logic programming, new research directions where ideas originating from logic programming can play a fundamental role, and relations between logic programming and other fields of computer science. The annual International Logic Programming Symposium, traditionally held in North America, is one of the main international conferences sponsored by the Association of Logic Programming. The themes of the 1997 conference are new theoretical and practical accomplishments in logic programming, new research directions where ideas originating from logic programming can play a fundamental role, and relations between logic programming and other fields of computer science. Topics include theoretical foundations, constraints, concurrency and parallelism, deductive databases, language design and implementation, nonmonotonic reasoning, and logic programming and the Internet.
Data Mining, Southeast Asia Edition

Our ability to generate and collect data has been increasing rapidly. Not only are all of our business, scientific, and government transactions now computerized, but the widespread use of digital cameras, publication tools, and bar codes also generate data. On the collection side, scanned text and image platforms, satellite remote sensing systems, and the World Wide Web have flooded us with a tremendous amount of data. This explosive growth has generated an even more urgent need for new techniques and automated tools that can help us transform this data into useful information and knowledge. Like the first edition, voted the most popular data mining book by KD Nuggets readers, this book explores concepts and techniques for the discovery of patterns hidden in large data sets, focusing on issues relating to their feasibility, usefulness, effectiveness, and scalability. However, since the publication of the first edition, great progress has been made in the development of new data mining methods, systems, and applications. This new edition substantially enhances the first edition, and new chapters have been added to address recent developments on mining complex types of data— including stream data, sequence data, graph structured data, social network data, and multi-relational data. - A comprehensive, practical look at the concepts and techniques you need to know to get the most out of real business data - Updates that incorporate input from readers, changes in the field, and more material on statistics and machine learning - Dozens of algorithms and implementation examples, all in easily understood pseudo-code and suitable for use in real-world, large-scale data mining projects - Complete classroom support for instructors at www.mkp.com/datamining2e companion site
Data Mining for Scientific and Engineering Applications

Author: R.L. Grossman
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-12-01
Advances in technology are making massive data sets common in many scientific disciplines, such as astronomy, medical imaging, bio-informatics, combinatorial chemistry, remote sensing, and physics. To find useful information in these data sets, scientists and engineers are turning to data mining techniques. This book is a collection of papers based on the first two in a series of workshops on mining scientific datasets. It illustrates the diversity of problems and application areas that can benefit from data mining, as well as the issues and challenges that differentiate scientific data mining from its commercial counterpart. While the focus of the book is on mining scientific data, the work is of broader interest as many of the techniques can be applied equally well to data arising in business and web applications. Audience: This work would be an excellent text for students and researchers who are familiar with the basic principles of data mining and want to learn more about the application of data mining to their problem in science or engineering.