Kato S Type Inequalities For Bounded Linear Operators In Hilbert Spaces

Download Kato S Type Inequalities For Bounded Linear Operators In Hilbert Spaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Kato S Type Inequalities For Bounded Linear Operators In Hilbert Spaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Kato's Type Inequalities for Bounded Linear Operators in Hilbert Spaces

The aim of this book is to present results related to Kato's famous inequality for bounded linear operators on complex Hilbert spaces obtained by the author in a sequence of recent research papers. As Linear Operator Theory in Hilbert spaces plays a central role in contemporary mathematics, with numerous applications in fields including Partial Differential Equations, Approximation Theory, Optimization Theory, and Numerical Analysis, the volume is intended for use by both researchers in various fields and postgraduate students and scientists applying inequalities in their specific areas. For the sake of completeness, all the results presented are completely proved and the original references where they have been firstly obtained are mentioned.
Encyclopaedia of Mathematics

Author: Michiel Hazewinkel
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
This is the first Supplementary volume to Kluwer's highly acclaimed Encyclopaedia of Mathematics. This additional volume contains nearly 600 new entries written by experts and covers developments and topics not included in the already published 10-volume set. These entries have been arranged alphabetically throughout. A detailed index is included in the book. This Supplementary volume enhances the existing 10-volume set. Together, these eleven volumes represent the most authoritative, comprehensive up-to-date Encyclopaedia of Mathematics available.
A Dictionary of Inequalities

The literature on inequalities is vast-in recent years the number of papers as well as the number of journals devoted to the subject have increased dramatically. At best, locating a particular inequality within the literature can be a cumbersome task. A Dictionary of Inequalities ends the dilemma of where to turn to find a result, a related inequality, or the references to the information you need. It provides a concise, alphabetical listing of each inequality-by its common name or its subject-with a short statement of the result, some comments, references to related inequalities, and a list of sources for further information. The author uses only the most elementary of mathematical terminology and does not offer proofs, thus making an interest in inequalities the only prerequisite for using the text. The author focuses on intuitive, physical forms of inequalities rather than their most general versions, and retains the beauty and importance of original versions rather than listing their later, abstract forms. He presents each in its simplest form with other renditions, such as for complex numbers and vectors, as extensions or under different headings. He has kept the book to a more manageable size by omitting inequalities in areas-such as elementary geometric and trigonometric inequalities-rarely used outside their fields. The end result is a current, concise, reference that puts the essential results on inequalities within easy reach. A Dictionary of Inequalities carries the beauty and attraction of the best and most successful dictionaries: on looking up a given item, the reader is likely to be intrigued and led by interest to others.