Iterative Methods For Nonlinear Optimization Problems

Download Iterative Methods For Nonlinear Optimization Problems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Iterative Methods For Nonlinear Optimization Problems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Numerical Methods for Unconstrained Optimization and Nonlinear Equations

This book has become the standard for a complete, state-of-the-art description of the methods for unconstrained optimization and systems of nonlinear equations. Originally published in 1983, it provides information needed to understand both the theory and the practice of these methods and provides pseudocode for the problems. The algorithms covered are all based on Newton's method or "quasi-Newton" methods, and the heart of the book is the material on computational methods for multidimensional unconstrained optimization and nonlinear equation problems. The republication of this book by SIAM is driven by a continuing demand for specific and sound advice on how to solve real problems. The level of presentation is consistent throughout, with a good mix of examples and theory, making it a valuable text at both the graduate and undergraduate level. It has been praised as excellent for courses with approximately the same name as the book title and would also be useful as a supplemental text for a nonlinear programming or a numerical analysis course. Many exercises are provided to illustrate and develop the ideas in the text. A large appendix provides a mechanism for class projects and a reference for readers who want the details of the algorithms. Practitioners may use this book for self-study and reference. For complete understanding, readers should have a background in calculus and linear algebra. The book does contain background material in multivariable calculus and numerical linear algebra.
Iterative Methods for Optimization

a carefully selected group of methods for unconstrained and bound constrained optimization problems is analyzed in depth both theoretically and algorithmically. The book focuses on clarity in algorithmic description and analysis rather than generality, and also provides pointers to the literature for the most general theoretical results and robust software,