It S About Time Elementary Mathematical Aspects Of Relativity


Download It S About Time Elementary Mathematical Aspects Of Relativity PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get It S About Time Elementary Mathematical Aspects Of Relativity book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

It’s About Time: Elementary Mathematical Aspects of Relativity


It’s About Time: Elementary Mathematical Aspects of Relativity

Author: Roger Cooke

language: en

Publisher: American Mathematical Soc.

Release Date: 2017-02-28


DOWNLOAD





This book has three main goals. First, it explores a selection of topics from the early period of the theory of relativity, focusing on particular aspects that are interesting or unusual. These include the twin paradox; relativistic mechanics and its interaction with Maxwell's laws; the earliest triumphs of general relativity relating to the orbit of Mercury and the deflection of light passing near the sun; and the surprising bizarre metric of Kurt Gödel, in which time travel is possible. Second, it provides an exposition of the differential geometry needed to understand these topics on a level that is intended to be accessible to those with just two years of university-level mathematics as background. Third, it reflects on the historical development of the subject and its significance for our understanding of what reality is and how we can know about the physical universe. The book also takes note of historical prefigurations of relativity, such as Euler's 1744 result that a particle moving on a surface and subject to no tangential acceleration will move along a geodesic, and the work of Lorentz and Poincaré on space-time coordinate transformations between two observers in motion at constant relative velocity. The book is aimed at advanced undergraduate mathematics, science, and engineering majors (and, of course, at any interested person who knows a little university-level mathematics). The reader is assumed to know the rudiments of advanced calculus, a few techniques for solving differential equations, some linear algebra, and basics of set theory and groups.

It's About Time


It's About Time

Author: N. David Mermin

language: en

Publisher: Princeton University Press

Release Date: 2009-07-06


DOWNLOAD





In It's About Time, N. David Mermin asserts that relativity ought to be an important part of everyone's education--after all, it is largely about time, a subject with which all are familiar. The book reveals that some of our most intuitive notions about time are shockingly wrong, and that the real nature of time discovered by Einstein can be rigorously explained without advanced mathematics. This readable exposition of the nature of time as addressed in Einstein's theory of relativity is accessible to anyone who remembers a little high school algebra and elementary plane geometry. The book evolved as Mermin taught the subject to diverse groups of undergraduates at Cornell University, none of them science majors, over three and a half decades. Mermin's approach is imaginative, yet accurate and complete. Clear, lively, and informal, the book will appeal to intellectually curious readers of all kinds, including even professional physicists, who will be intrigued by its highly original approach.

A Mathematical Introduction To General Relativity


A Mathematical Introduction To General Relativity

Author: Amol Sasane

language: en

Publisher: World Scientific

Release Date: 2021-08-10


DOWNLOAD





The book aims to give a mathematical presentation of the theory of general relativity (that is, spacetime-geometry-based gravitation theory) to advanced undergraduate mathematics students. Mathematicians will find spacetime physics presented in the definition-theorem-proof format familiar to them. The given precise mathematical definitions of physical notions help avoiding pitfalls, especially in the context of spacetime physics describing phenomena that are counter-intuitive to everyday experiences.In the first part, the differential geometry of smooth manifolds, which is needed to present the spacetime-based gravitation theory, is developed from scratch. Here, many of the illustrating examples are the Lorentzian manifolds which later serve as spacetime models. This has the twofold purpose of making the physics forthcoming in the second part relatable, and the mathematics learnt in the first part less dry. The book uses the modern coordinate-free language of semi-Riemannian geometry. Nevertheless, to familiarise the reader with the useful tool of coordinates for computations, and to bridge the gap with the physics literature, the link to coordinates is made through exercises, and via frequent remarks on how the two languages are related.In the second part, the focus is on physics, covering essential material of the 20th century spacetime-based view of gravity: energy-momentum tensor field of matter, field equation, spacetime examples, Newtonian approximation, geodesics, tests of the theory, black holes, and cosmological models of the universe.Prior knowledge of differential geometry or physics is not assumed. The book is intended for self-study, and the solutions to the (over 200) exercises are included.