Isometries On Banach Spaces

Download Isometries On Banach Spaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Isometries On Banach Spaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Isometries on Banach Spaces

Fundamental to the study of any mathematical structure is an understanding of its symmetries. In the class of Banach spaces, this leads naturally to a study of isometries-the linear transformations that preserve distances. In his foundational treatise, Banach showed that every linear isometry on the space of continuous functions on a compact metric
Isometries in Banach Spaces

A continuation of the authors' previous book, Isometries on Banach Spaces: Vector-valued Function Spaces and Operator Spaces, Volume Two covers much of the work that has been done on characterizing isometries on various Banach spaces. Picking up where the first volume left off, the book begins with a chapter on the Banach-Stone property.
Isometries on Banach Spaces

Author: Richard J. Fleming
language: en
Publisher: Chapman and Hall/CRC
Release Date: 2002-12-23
Fundamental to the study of any mathematical structure is an understanding of its symmetries. In the class of Banach spaces, this leads naturally to a study of isometries-the linear transformations that preserve distances. In his foundational treatise, Banach showed that every linear isometry on the space of continuous functions on a compact metric space must transform a continuous function x into a continuous function y satisfying y(t) = h(t)x(p(t)), where p is a homeomorphism and |h| is identically one. Isometries on Banach Spaces: Function Spaces is the first of two planned volumes that survey investigations of Banach-space isometries. This volume emphasizes the characterization of isometries and focuses on establishing the type of explicit, canonical form given above in a variety of settings. After an introductory discussion of isometries in general, four chapters are devoted to describing the isometries on classical function spaces. The final chapter explores isometries on Banach algebras. This treatment provides a clear account of historically important results, exposes the principal methods of attack, and includes some results that are more recent and some that are lesser known. Unique in its focus, this book will prove useful for experts as well as beginners in the field and for those who simply want to acquaint themselves with this area of Banach space theory.