Investigation Of Advanced Gan Hemts For Digital And High Frequency Applications

Download Investigation Of Advanced Gan Hemts For Digital And High Frequency Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Investigation Of Advanced Gan Hemts For Digital And High Frequency Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Nanoelectronic Devices and Applications

Author: Trupti Ranjan Lenka
language: en
Publisher: Bentham Science Publishers
Release Date: 2024-07-02
Nanoelectronic Devices and Applications presents reviews on recent advances in nanoelectronic device design and new directions for their practical use. The volume includes 16 edited chapters that cover novel material systems, band engineering, modelling and simulations, fabrication and characterization techniques, and their emerging applications. The discussions presented in this book are based on current understandings on innovations and future trends, and references are provided for advanced scholars. Chapter 1 presents an overview of recent innovations and future prospects in III-nitride semiconductor technologies for RF, power, digital and quantum applications. Chapter 2 reports new trends in GaN-based optical devices for sensing and micro-display applications. Chapter 3 shows current interests in nanophosphors and their utilizations in improving device performance of InGaN nanowire light-emitting diodes (LEDs). Recent studies on the effect of potential profile on the carrier transport in AlGaAs based double quantum well structures and their applications are presented in Chapter 4. The recent progress in high-electron-mobility transistors (HEMTs) is presented through Chapters 5, 6, and 7. A comprehensive review on β-Ga2O3 emphasizing material properties, growth approaches, and its applications for next-generation high-power nanoelectronics; the effect of dielectric layers on the characteristics of AlN/β-Ga2O3 HEMTs are presented in Chapter 8 and 9 respectively. Chapters 10-14 summarize the recent studies in field-effect transistors (FETs) adopting different materials and structures. Chapter 15 presents current research in 2D Tungsten Diselenide (WSe2) with special focus on the material properties, device structures, applications, and challenges. Finally, Chapter 16 presents a systematic review of memristors, and memristive semiconductor devices. The book is intended as a primary resource for elective subjects in advanced electronics and computer engineering courses at university level. Researchers and industry professionals will also learn about emerging trends and state-of-the-art research in nanoelectronics.
Antenna-in-Package Technology and Applications

A comprehensive guide to antenna design, manufacturing processes, antenna integration, and packaging Antenna-in-Package Technology and Applications contains an introduction to the history of AiP technology. It explores antennas and packages, thermal analysis and design, as well as measurement setups and methods for AiP technology. The authors—well-known experts on the topic—explain why microstrip patch antennas are the most popular and describe the myriad constraints of packaging, such as electrical performance, thermo-mechanical reliability, compactness, manufacturability, and cost. The book includes information on how the choice of interconnects is governed by JEDEC for automatic assembly and describes low-temperature co-fired ceramic, high-density interconnects, fan-out wafer level packaging–based AiP, and 3D-printing-based AiP. The book includes a detailed discussion of the surface laminar circuit–based AiP designs for large-scale mm-wave phased arrays for 94-GHz imagers and 28-GHz 5G New Radios. Additionally, the book includes information on 3D AiP for sensor nodes, near-field wireless power transfer, and IoT applications. This important book: • Includes a brief history of antenna-in-package technology • Describes package structures widely used in AiP, such as ball grid array (BGA) and quad flat no-leads (QFN) • Explores the concepts, materials and processes, designs, and verifications with special consideration for excellent electrical, mechanical, and thermal performance Written for students in electrical engineering, professors, researchers, and RF engineers, Antenna-in-Package Technology and Applications offers a guide to material selection for antennas and packages, antenna design with manufacturing processes and packaging constraints, antenna integration, and packaging.