Inverse Spectral Problems For Linear Differential Operators And Their Applications

Download Inverse Spectral Problems For Linear Differential Operators And Their Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Inverse Spectral Problems For Linear Differential Operators And Their Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Inverse Spectral Problems for Linear Differential Operators and Their Applications

Aims to construct the inverse problem theory for ordinary non-self-adjoint differential operators of arbitary order on the half-line and on a finite interval. The book consists of two parts: in the first part the author presents a general inverse problem of recovering differential equations with integrable coefficients when the behaviour of the spectrum is arbitrary. The Weyl matrix is introduced and studied as a spectral characteristic. The second part of the book is devoted to solving incomplete inverse problems when a priori information about the operator or its spectrum is available and these problems are significant in applications.
Inverse Spectral Problems for Linear Differential Operators and Their Applications

Aims to construct the inverse problem theory for ordinary non-self-adjoint differential operators of arbitary order on the half-line and on a finite interval. The book consists of two parts: in the first part the author presents a general inverse problem of recovering differential equations with integrable coefficients when the behaviour of the spe
Direct and Inverse Finite-Dimensional Spectral Problems on Graphs

Considering that the motion of strings with finitely many masses on them is described by difference equations, this book presents the spectral theory of such problems on finite graphs of strings. The direct problem of finding the eigenvalues as well as the inverse problem of finding strings with a prescribed spectrum are considered. This monograph gives a comprehensive and self-contained account on the subject, thereby also generalizing known results. The interplay between the representation of rational functions and their zeros and poles is at the center of the methods used. The book also unravels connections between finite dimensional and infinite dimensional spectral problems on graphs, and between self-adjoint and non-self-adjoint finite-dimensional problems. This book is addressed to researchers in spectral theory of differential and difference equations as well as physicists and engineers who may apply the presented results and methods to their research.