Invariant Markov Processes Under Lie Group Actions

Download Invariant Markov Processes Under Lie Group Actions PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Invariant Markov Processes Under Lie Group Actions book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Invariant Markov Processes Under Lie Group Actions

The purpose of this monograph is to provide a theory of Markov processes that are invariant under the actions of Lie groups, focusing on ways to represent such processes in the spirit of the classical Lévy-Khinchin representation. It interweaves probability theory, topology, and global analysis on manifolds to present the most recent results in a developing area of stochastic analysis. The author’s discussion is structured with three different levels of generality:— A Markov process in a Lie group G that is invariant under the left (or right) translations— A Markov process xt in a manifold X that is invariant under the transitive action of a Lie group G on X— A Markov process xt invariant under the non-transitive action of a Lie group GA large portion of the text is devoted to the representation of inhomogeneous Lévy processes in Lie groups and homogeneous spaces by a time dependent triple through a martingale property. Preliminary definitions and results in both stochastics and Lie groups are provided in a series of appendices, making the book accessible to those who may be non-specialists in either of these areas. Invariant Markov Processes Under Lie Group Actions will be of interest to researchers in stochastic analysis and probability theory, and will also appeal to experts in Lie groups, differential geometry, and related topics interested in applications of their own subjects.
Geometry and Invariance in Stochastic Dynamics

This book grew out of the Random Transformations and Invariance in Stochastic Dynamics conference held in Verona from the 25th to the 28th of March 2019 in honour of Sergio Albeverio. It presents the new area of studies concerning invariance and symmetry properties of finite and infinite dimensional stochastic differential equations.This area constitutes a natural, much needed, extension of the theory of classical ordinary and partial differential equations, where the reduction theory based on symmetry and invariance of such classical equations has historically proved to be very important both for theoretical and numerical studies and has given rise to important applications. The purpose of the present book is to present the state of the art of the studies on stochastic systems from this point of view, present some of the underlying fundamental ideas and methods involved, and to outline the main lines for future developments. The main focus is on bridging the gap between deterministic and stochastic approaches, with the goal of contributing to the elaboration of a unified theory that will have a great impact both from the theoretical point of view and the point of view of applications. The reader is a mathematician or a theoretical physicist. The main discipline is stochastic analysis with profound ideas coming from Mathematical Physics and Lie’s Group Geometry. While the audience consists essentially of academicians, the reader can also be a practitioner with Ph.D., who is interested in efficient stochastic modelling.
Lévy Processes in Lie Groups

Author: Ming Liao
language: en
Publisher: Cambridge University Press
Release Date: 2004-05-10
The theory of Lévy processes in Lie groups is not merely an extension of the theory of Lévy processes in Euclidean spaces. Because of the unique structures possessed by non-commutative Lie groups, these processes exhibit certain interesting limiting properties which are not present for their counterparts in Euclidean spaces. These properties reveal a deep connection between the behaviour of the stochastic processes and the underlying algebraic and geometric structures of the Lie groups themselves. The purpose of this work is to provide an introduction to Lévy processes in general Lie groups, the limiting properties of Lévy processes in semi-simple Lie groups of non-compact type and the dynamical behavior of such processes as stochastic flows on certain homogeneous spaces. The reader is assumed to be familiar with Lie groups and stochastic analysis, but no prior knowledge of semi-simple Lie groups is required.