Introductory R A Beginner S Guide To Data Visualisation Statistical Analysis And Programming In R


Download Introductory R A Beginner S Guide To Data Visualisation Statistical Analysis And Programming In R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introductory R A Beginner S Guide To Data Visualisation Statistical Analysis And Programming In R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

R for Data Science


R for Data Science

Author: Hadley Wickham

language: en

Publisher: "O'Reilly Media, Inc."

Release Date: 2016-12-12


DOWNLOAD





Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

Introductory R: A Beginner's Guide to Data Visualisation, Statistical Analysis and Programming in R


Introductory R: A Beginner's Guide to Data Visualisation, Statistical Analysis and Programming in R

Author: Robert J. Knell

language: en

Publisher: Robert Knell

Release Date: 2014-05-14


DOWNLOAD





R is now the most widely used statistical software in academic science and it is rapidly expanding into other fields such as finance. R is almost limitlessly flexible and powerful, hence its appeal, but can be very difficult for the novice user. There are no easy pull-down menus, error messages are often cryptic and simple tasks like importing your data or exporting a graph can be difficult and frustrating. Introductory R is written for the novice user who knows a little about statistics but who hasn't yet got to grips with the ways of R. This new edition is completely revised and greatly expanded with new chapters on the basics of descriptive statistics and statistical testing, considerably more information on statistics and six new chapters on programming in R. Topics covered include: A walkthrough of the basics of R's command line interface Data structures including vectors, matrices and data frames R functions and how to use them Expanding your analysis and plotting capacities with add-in R packages A set of simple rules to follow to make sure you import your data properly An introduction to the script editor and advice on workflow A detailed introduction to drawing publication-standard graphs in R How to understand the help files and how to deal with some of the most common errors that you might encounter. Basic descriptive statistics The theory behind statistical testing and how to interpret the output of statistical tests Thorough coverage of the basics of data analysis in R with chapters on using chi-squared tests, t-tests, correlation analysis, regression, ANOVA and general linear models What the assumptions behind the analyses mean and how to test them using diagnostic plots Explanations of the summary tables produced for statistical analyses such as regression and ANOVA Writing your own functions in R Using table operations to manipulate matrices and data frames Using conditional statements and loops in R programmes. Writing longer R programmes. The techniques of statistical analysis in R are illustrated by a series of chapters where experimental and survey data are analysed. There is a strong emphasis on using real data from real scientific research, with all the problems and uncertainty that implies, rather than well-behaved made-up data that give ideal and easy to analyse results.

Beginner's Guide to R Programming


Beginner's Guide to R Programming

Author: Agasti Khatri

language: en

Publisher: Educohack Press

Release Date: 2025-02-20


DOWNLOAD





Discover the world of data analysis with "Beginner's Guide to R Programming." This comprehensive resource is crafted to help individuals learn the R programming language and explore its diverse applications. Whether you're a complete beginner or an experienced analyst, our book offers a structured learning path that starts with the basics and progresses to advanced topics like statistical analysis, data visualization, and machine learning. Each chapter includes practical examples, exercises, and real-world case studies, encouraging hands-on experimentation with R code. You'll delve into data types, functions, data manipulation, statistical analysis, data visualization, and more, building a solid foundation in R programming and data analysis. Complex concepts are explained in clear, easy-to-understand language, with visual aids, code snippets, and step-by-step tutorials to help you grasp key ideas effectively. The book emphasizes practical applications of R in real-world scenarios, showcasing how you can use R to solve problems, analyze data, make informed decisions, and communicate insights. With access to supplementary resources, including downloadable datasets, code samples, and additional exercises, you'll further enhance your learning experience and practice your skills.