Introduction To Vassiliev Knot Invariants

Download Introduction To Vassiliev Knot Invariants PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Vassiliev Knot Invariants book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Introduction to Vassiliev Knot Invariants

Author: S. Chmutov
language: en
Publisher: Cambridge University Press
Release Date: 2012-05-24
A detailed exposition of the theory with an emphasis on its combinatorial aspects.
An Introduction to Quantum and Vassiliev Knot Invariants

This book provides an accessible introduction to knot theory, focussing on Vassiliev invariants, quantum knot invariants constructed via representations of quantum groups, and how these two apparently distinct theories come together through the Kontsevich invariant. Consisting of four parts, the book opens with an introduction to the fundamentals of knot theory, and to knot invariants such as the Jones polynomial. The second part introduces quantum invariants of knots, working constructively from first principles towards the construction of Reshetikhin-Turaev invariants and a description of how these arise through Drinfeld and Jimbo's quantum groups. Its third part offers an introduction to Vassiliev invariants, providing a careful account of how chord diagrams and Jacobi diagrams arise in the theory, and the role that Lie algebras play. The final part of the book introduces the Konstevich invariant. This is a universal quantum invariant and a universal Vassiliev invariant, and brings together these two seemingly different families of knot invariants. The book provides a detailed account of the construction of the Jones polynomial via the quantum groups attached to sl(2), the Vassiliev weight system arising from sl(2), and how these invariants come together through the Kontsevich invariant.
Introduction to Vassiliev Knot Invariants

With hundreds of worked examples, exercises and illustrations, this detailed exposition of the theory of Vassiliev knot invariants opens the field to students with little or no knowledge in this area. It also serves as a guide to more advanced material. The book begins with a basic and informal introduction to knot theory, giving many examples of knot invariants before the class of Vassiliev invariants is introduced. This is followed by a detailed study of the algebras of Jacobi diagrams and 3-graphs, and the construction of functions on these algebras via Lie algebras. The authors then describe two constructions of a universal invariant with values in the algebra of Jacobi diagrams: via iterated integrals and via the Drinfeld associator, and extend the theory to framed knots. Various other topics are then discussed, such as Gauss diagram formulae, before the book ends with Vassiliev's original construction.