Introduction To The Theory Of Ferromagnetism


Download Introduction To The Theory Of Ferromagnetism PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To The Theory Of Ferromagnetism book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Introduction to the Theory of Ferromagnetism


Introduction to the Theory of Ferromagnetism

Author: Amikam Aharoni

language: en

Publisher: Oxford University Press

Release Date: 2000


DOWNLOAD





This second edition of Aharoni's Introduction to the Theory of Ferromagnetism includes updated material on the nucleation problem and numerical micromagnetics. It is a suitable textbook for advanced undergraduates and first year graduates.

Introduction to the Theory of Ferromagnetism


Introduction to the Theory of Ferromagnetism

Author: Amikam Aharoni

language: en

Publisher: Clarendon Press

Release Date: 2000


DOWNLOAD





The present book is the second edition of Amikam Aharoni's Introduction to the Theory of Ferromagnetism, based on a popular lecture course. Like its predecessor, it serves a two-fold purpose: First, it is a textbook for first-year graduate and advanced undergraduate students in both physics and engineering. Second, it explains the basic theoretical principles on which the work is based for practising engineers and experimental physicists who work in the field of magnetism, thus also serving to a certain extent as a reference book. For both professionals and students the emphasis is on introducing the foundations of the different subfields, highlighting the direction and tendency of the most recent research. For this new edition, the author has thoroughly updated the material especially of chapters 9 ('The Nucleation Problem') and 11 ('Numerical Micromagnetics'), which now contain the state of the art required by students and professionals who work on advanced topics of ferromagnetism. From reviews on the 1/e: '... a much needed, thorough introduction and guide to the literature. It is full of wisdom and commentary. Even more, it is Amikam Aharoni at his best - telling a story... He is fun to read... The extensive references provide an advanced review of micromagnetics and supply sources for suitable exercises... there is much for the student to do with the guidance provided by Introduction to the Theory of Ferromagnetism.' A. Arrott, Physics Today, September 1997

Theory Of Magnetism Made Simple, The: An Introduction To Physical Concepts And To Some Useful Mathematical Methods


Theory Of Magnetism Made Simple, The: An Introduction To Physical Concepts And To Some Useful Mathematical Methods

Author: Daniel C Mattis

language: en

Publisher: World Scientific Publishing Company

Release Date: 2006-03-10


DOWNLOAD





This new version of a classic updates much of the material in earlier editions, including the first chapter, on the history of the field. Important modifications reflect major discoveries of the past decades. A historical perspective is maintained throughout. The reader is drawn into the process of discovery: starting with a phenomenon, finding plausible explanations and competing theories — and finally, the solution.The theory of magnetism is practically a metaphor for theoretical physics. The very first quantum many-body theory (Bethe's ansatz) was devised for magnetic chains, just as mean-field theory was invented a century ago by Weiss to explain Curie's Law.The first two chapters of this book are immensely readable, taking us from prehistory to the “spin valves” of the most recent past. Topics in subsequent chapters include: angular momenta and spin (Chapter 3), quantum theory of simple systems, followed by increasingly technical insights into ordered and random systems, thermal fluctuations, phase transitions, chaos and the like. Contemporary developments in nanotechnology now seek to take advantage of the electron's spin as well as of its charge. The time is not far off when nano-circuits made entirely of silicon exhibit such many-body properties as superconductivity or ferromagnetism — without any superconducting materials or magnetic ions being present. The reader of this book will be prepared for such exotic twenty-first century applications.Daniel C Mattis, BS, MS, PhD, Fellow of the American Physical Society (APS), is a frequent lecturer at research institutions and the author of several textbooks and numerous research articles. His expertise includes many-body theory, electrical conductivity, quantum theory of magnetism and most recently, nanotechnology. Prof. Mattis is on the editorial panel for high-temperature superconductivity of the International Journal of Modern Physics B and Modern Physics Letters B, both published by World Scientific. Currently serving as Professor in the Physics department at the University of Utah in Salt Lake City, Utah, USA, at various times he has been visiting Professor at Yale University (New Haven), State University of New York (Buffalo), Temple University (Philadelphia), and served as “Wei-Lun Visiting Professor” at the Chinese University of Hong Kong. A founding member of the “Few-Body Physics” section of the APS, he has also served as Chair of the standing committee of the APS for the “International Freedom of Scientists.”