Introduction To The Statistics Of Poisson Processes And Applications

Download Introduction To The Statistics Of Poisson Processes And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To The Statistics Of Poisson Processes And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Introduction to the Statistics of Poisson Processes and Applications

This book covers an extensive class of models involving inhomogeneous Poisson processes and deals with their identification, i.e. the solution of certain estimation or hypothesis testing problems based on the given dataset. These processes are mathematically easy-to-handle and appear in numerous disciplines, including astronomy, biology, ecology, geology, seismology, medicine, physics, statistical mechanics, economics, image processing, forestry, telecommunications, insurance and finance, reliability, queuing theory, wireless networks, and localisation of sources. Beginning with the definitions and properties of some fundamental notions (stochastic integral, likelihood ratio, limit theorems, etc.), the book goes on to analyse a wide class of estimators for regular and singular statistical models. Special attention is paid to problems of change-point type, and in particular cusp-type change-point models, then the focus turns to the asymptotically efficient nonparametric estimation of the mean function, the intensity function, and of some functionals. Traditional hypothesis testing, including some goodness-of-fit tests, is also discussed. The theory is then applied to three classes of problems: misspecification in regularity (MiR),corresponding to situations where the chosen change-point model and that of the real data have different regularity; optical communication with phase and frequency modulation of periodic intensity functions; and localization of a radioactive (Poisson) source on the plane using K detectors. Each chapter concludes with a series of problems, and state-of-the-art references are provided, making the book invaluable to researchers and students working in areas which actively use inhomogeneous Poisson processes.
Lectures on the Poisson Process

Author: Günter Last
language: en
Publisher: Cambridge University Press
Release Date: 2017-10-26
A modern introduction to the Poisson process, with general point processes and random measures, and applications to stochastic geometry.
Poisson Point Processes

Author: Roy L. Streit
language: en
Publisher: Springer Science & Business Media
Release Date: 2010-09-15
"Poisson Point Processes provides an overview of non-homogeneous and multidimensional Poisson point processes and their numerous applications. Readers will find constructive mathematical tools and applications ranging from emission and transmission computed tomography to multiple target tracking and distributed sensor detection, written from an engineering perspective. A valuable discussion of the basic properties of finite random sets is included. Maximum likelihood estimation techniques are discussed for several parametric forms of the intensity function, including Gaussian sums, together with their Cramer-Rao bounds. These methods are then used to investigate: -Several medical imaging techniques, including positron emission tomography (PET), single photon emission computed tomography (SPECT), and transmission tomography (CT scans) -Various multi-target and multi-sensor tracking applications, -Practical applications in areas like distributed sensing and detection, -Related finite point processes such as marked processes, hard core processes, cluster processes, and doubly stochastic processes, Perfect for researchers, engineers and graduate students working in electrical engineering and computer science, Poisson Point Processes will prove to be an extremely valuable volume for those seeking insight into the nature of these processes and their diverse applications.