Introduction To The Perturbation Theory Of Hamiltonian Systems


Download Introduction To The Perturbation Theory Of Hamiltonian Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To The Perturbation Theory Of Hamiltonian Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Introduction to the Perturbation Theory of Hamiltonian Systems


Introduction to the Perturbation Theory of Hamiltonian Systems

Author: Dmitry Treschev

language: en

Publisher: Springer

Release Date: 2010-04-29


DOWNLOAD





This book is an extended version of lectures given by the ?rst author in 1995–1996 at the Department of Mechanics and Mathematics of Moscow State University. We believe that a major part of the book can be regarded as an additional material to the standard course of Hamiltonian mechanics. In comparison with the original Russian 1 version we have included new material, simpli?ed some proofs and corrected m- prints. Hamiltonian equations ?rst appeared in connection with problems of geometric optics and celestial mechanics. Later it became clear that these equations describe a large classof systemsin classical mechanics,physics,chemistry,and otherdomains. Hamiltonian systems and their discrete analogs play a basic role in such problems as rigid body dynamics, geodesics on Riemann surfaces, quasi-classic approximation in quantum mechanics, cosmological models, dynamics of particles in an accel- ator, billiards and other systems with elastic re?ections, many in?nite-dimensional models in mathematical physics, etc. In this book we study Hamiltonian systems assuming that they depend on some parameter (usually?), where for?= 0 the dynamics is in a sense simple (as a rule, integrable). Frequently such a parameter appears naturally. For example, in celestial mechanics it is accepted to take? equal to the ratio: the mass of Jupiter over the mass of the Sun. In other cases it is possible to introduce the small parameter ar- ?cially.

Introduction to the Perturbation Theory of Hamiltonian Systems


Introduction to the Perturbation Theory of Hamiltonian Systems

Author: Dmitry Treschev

language: en

Publisher: Springer Science & Business Media

Release Date: 2009-10-08


DOWNLOAD





This book is an extended version of lectures given by the ?rst author in 1995–1996 at the Department of Mechanics and Mathematics of Moscow State University. We believe that a major part of the book can be regarded as an additional material to the standard course of Hamiltonian mechanics. In comparison with the original Russian 1 version we have included new material, simpli?ed some proofs and corrected m- prints. Hamiltonian equations ?rst appeared in connection with problems of geometric optics and celestial mechanics. Later it became clear that these equations describe a large classof systemsin classical mechanics,physics,chemistry,and otherdomains. Hamiltonian systems and their discrete analogs play a basic role in such problems as rigid body dynamics, geodesics on Riemann surfaces, quasi-classic approximation in quantum mechanics, cosmological models, dynamics of particles in an accel- ator, billiards and other systems with elastic re?ections, many in?nite-dimensional models in mathematical physics, etc. In this book we study Hamiltonian systems assuming that they depend on some parameter (usually?), where for?= 0 the dynamics is in a sense simple (as a rule, integrable). Frequently such a parameter appears naturally. For example, in celestial mechanics it is accepted to take? equal to the ratio: the mass of Jupiter over the mass of the Sun. In other cases it is possible to introduce the small parameter ar- ?cially.

Introduction to Hamiltonian Dynamical Systems and the N-Body Problem


Introduction to Hamiltonian Dynamical Systems and the N-Body Problem

Author: Kenneth Meyer

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-04-17


DOWNLOAD





The theory of Hamiltonian systems is a vast subject which can be studied from many different viewpoints. This book develops the basic theory of Hamiltonian differential equations from a dynamical systems point of view. That is, the solutions of the differential equations are thought of as curves in a phase space and it is the geometry of these curves that is the important object of study. The analytic underpinnings of the subject are developed in detail. The last chapter on twist maps has a more geometric flavor. It was written by Glen R. Hall. The main example developed in the text is the classical N-body problem, i.e., the Hamiltonian system of differential equations which describe the motion of N point masses moving under the influence of their mutual gravitational attraction. Many of the general concepts are applied to this example. But this is not a book about the N-body problem for its own sake. The N-body problem is a subject in its own right which would require a sizable volume of its own. Very few of the special results which only apply to the N-body problem are given.