Introduction To The Mathematics Of Subdivision Surfaces

Download Introduction To The Mathematics Of Subdivision Surfaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To The Mathematics Of Subdivision Surfaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Introduction to the Mathematics of Subdivision Surfaces

This is an introduction to the mathematical theory which underlies subdivision surfaces, as it is used in computer graphics and animation. Subdivision surfaces enable a designer to specify the approximate form of a surface that defines an object and then to refine it to get a more useful or attractive version. A considerable amount of mathematical theory is needed to understand the characteristics of the resulting surfaces, and this book explains the material carefully and rigorously. The text is highly accessible, organising subdivision methods in a unique and unambiguous hierarchy which builds insight and understanding. The material is not restricted to questions related to regularity of subdivision surfaces at so-called extraordinary points, but gives a broad discussion of the various methods. It is therefore an excellent preparation for more advanced texts that delve more deeply into special questions of regularity.
Subdivision Surfaces

Author: Jörg Peters
language: en
Publisher: Springer Science & Business Media
Release Date: 2008-05-07
Since their first appearance in 1974, subdivision algorithms for generating surfaces of arbitrary topology have gained widespread popularity in computer graphics and are being evaluated in engineering applications. This development was complemented by ongoing efforts to develop appropriate mathematical tools for a thorough analysis, and today, many of the fascinating properties of subdivision are well understood. This book summarizes the current knowledge on the subject. The focus of the book is on the development of a comprehensive mathematical theory, and less on algorithmic aspects. It is intended to serve researchers and engineers - both new to the beauty of the subject - as well as experts, academic teachers and graduate students or, in short, anybody who is interested in the foundations of this flourishing branch of applied geometry.
Introduction to the Mathematics of Computer Graphics

Author: Nathan Carter
language: en
Publisher: American Mathematical Soc.
Release Date: 2016-12-31
This text, by an award-winning [Author];, was designed to accompany his first-year seminar in the mathematics of computer graphics. Readers learn the mathematics behind the computational aspects of space, shape, transformation, color, rendering, animation, and modeling. The software required is freely available on the Internet for Mac, Windows, and Linux. The text answers questions such as these: How do artists build up realistic shapes from geometric primitives? What computations is my computer doing when it generates a realistic image of my 3D scene? What mathematical tools can I use to animate an object through space? Why do movies always look more realistic than video games? Containing the mathematics and computing needed for making their own 3D computer-generated images and animations, the text, and the course it supports, culminates in a project in which students create a short animated movie using free software. Algebra and trigonometry are prerequisites; calculus is not, though it helps. Programming is not required. Includes optional advanced exercises for students with strong backgrounds in math or computer science. Instructors interested in exposing their liberal arts students to the beautiful mathematics behind computer graphics will find a rich resource in this text.