Introduction To Superanalysis Superanalysis

Download Introduction To Superanalysis Superanalysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Superanalysis Superanalysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Introduction to Superanalysis

Author: F.A. Berezin
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-04-09
TO SUPERANAL YSIS Edited by A.A. KIRILLOV Translated from the Russian by J. Niederle and R. Kotecky English translation edited and revised by Dimitri Leites SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. Library of Congress Cataloging-in-Publication Data Berezin, F.A. (Feliks Aleksandrovich) Introduction to superanalysis. (Mathematical physics and applied mathematics; v. 9) Part I is translation of: Vvedenie v algebru i analiz s antikommutirurushchimi peremennymi. Bibliography: p. Includes index. 1. Mathetical analysis. I. Title. II. Title: Superanalysis. III. Series. QA300. B459 1987 530. 15'5 87-16293 ISBN 978-90-481-8392-0 ISBN 978-94-017-1963-6 (eBook) DOI 10. 1007/978-94-017-1963-6 All Rights Reserved © 1987 by Springer Science+Business Media Dordrecht Originally published by D. Reidel Publishing Company, Dordrecht, Holland in 1987 No part of the material protected by this copyright notice may be reproduced in whole or in part or utilized in any form or by any means electronic or mechanical including photocopying recording or storing in any electronic information system without first obtaining the written permission of the copyright owner. CONTENTS EDITOR'S FOREWORD ix INTRODUCTION 1 1. The Sources 1 2. Supermanifolds 3 3. Additional Structures on Supermanifolds 11 4. Representations of Lie Superalgebras and Supergroups 21 5. Conclusion 23 References 24 PART I CHAPTER 1. GRASSMANN ALGEBRA 29 1. Basic Facts on Associative Algebras 29 2. Grassmann Algebras 35 3. Algebras A(U) 55 CHAPTER 2. SUPERANAL YSIS 74 1. Derivatives 74 2. Integral 76 CHAPTER 3. LINEAR ALGEBRA IN Zz-GRADED SPACES 90 1.
Superanalysis

Author: Andrei Y. Khrennikov
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
defined as elements of Grassmann algebra (an algebra with anticom muting generators). The derivatives of these elements with respect to anticommuting generators were defined according to algebraic laws, and nothing like Newton's analysis arose when Martin's approach was used. Later, during the next twenty years, the algebraic apparatus de veloped by Martin was used in all mathematical works. We must point out here the considerable contribution made by F. A. Berezin, G 1. Kac, D. A. Leites, B. Kostant. In their works, they constructed a new division of mathematics which can naturally be called an algebraic superanalysis. Following the example of physicists, researchers called the investigations carried out with the use of commuting and anticom muting coordinates supermathematics; all mathematical objects that appeared in supermathematics were called superobjects, although, of course, there is nothing "super" in supermathematics. However, despite the great achievements in algebraic superanaly sis, this formalism could not be regarded as a generalization to the case of commuting and anticommuting variables from the ordinary Newton analysis. What is more, Schwinger's formalism was still used in practically all physical works, on an intuitive level, and physicists regarded functions of anticommuting variables as "real functions" == maps of sets and not as elements of Grassmann algebras. In 1974, Salam and Strathdee proposed a very apt name for a set of super points. They called this set a superspace.