Introduction To Stochastic Dynamic Programming Ross Pdf


Download Introduction To Stochastic Dynamic Programming Ross Pdf PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Stochastic Dynamic Programming Ross Pdf book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Introduction to Stochastic Dynamic Programming


Introduction to Stochastic Dynamic Programming

Author: Sheldon M. Ross

language: en

Publisher: Academic Press

Release Date: 2014-07-10


DOWNLOAD





Introduction to Stochastic Dynamic Programming presents the basic theory and examines the scope of applications of stochastic dynamic programming. The book begins with a chapter on various finite-stage models, illustrating the wide range of applications of stochastic dynamic programming. Subsequent chapters study infinite-stage models: discounting future returns, minimizing nonnegative costs, maximizing nonnegative returns, and maximizing the long-run average return. Each of these chapters first considers whether an optimal policy need exist—providing counterexamples where appropriate—and then presents methods for obtaining such policies when they do. In addition, general areas of application are presented. The final two chapters are concerned with more specialized models. These include stochastic scheduling models and a type of process known as a multiproject bandit. The mathematical prerequisites for this text are relatively few. No prior knowledge of dynamic programming is assumed and only a moderate familiarity with probability— including the use of conditional expectation—is necessary.

Introduction to Stochastic Dynamic Programming


Introduction to Stochastic Dynamic Programming

Author: Sheldon M. Ross

language: en

Publisher: Elsevier

Release Date: 1995-08-24


DOWNLOAD





Introduction to Stochastic Dynamic Programming

Reinforcement Learning


Reinforcement Learning

Author: Richard S. Sutton

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





Reinforcement learning is the learning of a mapping from situations to actions so as to maximize a scalar reward or reinforcement signal. The learner is not told which action to take, as in most forms of machine learning, but instead must discover which actions yield the highest reward by trying them. In the most interesting and challenging cases, actions may affect not only the immediate reward, but also the next situation, and through that all subsequent rewards. These two characteristics -- trial-and-error search and delayed reward -- are the most important distinguishing features of reinforcement learning. Reinforcement learning is both a new and a very old topic in AI. The term appears to have been coined by Minsk (1961), and independently in control theory by Walz and Fu (1965). The earliest machine learning research now viewed as directly relevant was Samuel's (1959) checker player, which used temporal-difference learning to manage delayed reward much as it is used today. Of course learning and reinforcement have been studied in psychology for almost a century, and that work has had a very strong impact on the AI/engineering work. One could in fact consider all of reinforcement learning to be simply the reverse engineering of certain psychological learning processes (e.g. operant conditioning and secondary reinforcement). Reinforcement Learning is an edited volume of original research, comprising seven invited contributions by leading researchers.