Introduction To Statistical Data Analysis For The Life Sciences Second Edition


Download Introduction To Statistical Data Analysis For The Life Sciences Second Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Statistical Data Analysis For The Life Sciences Second Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Introduction to Statistical Data Analysis for the Life Sciences, Second Edition


Introduction to Statistical Data Analysis for the Life Sciences, Second Edition

Author: Claus Thorn Ekstrom

language: en

Publisher: CRC Press

Release Date: 2014-11-06


DOWNLOAD





A Hands-On Approach to Teaching Introductory Statistics Expanded with over 100 more pages, Introduction to Statistical Data Analysis for the Life Sciences, Second Edition presents the right balance of data examples, statistical theory, and computing to teach introductory statistics to students in the life sciences. This popular textbook covers the mathematics underlying classical statistical analysis, the modeling aspects of statistical analysis and the biological interpretation of results, and the application of statistical software in analyzing real-world problems and datasets. New to the Second Edition A new chapter on non-linear regression models A new chapter that contains examples of complete data analyses, illustrating how a full-fledged statistical analysis is undertaken Additional exercises in most chapters A summary of statistical formulas related to the specific designs used to teach the statistical concepts This text provides a computational toolbox that enables students to analyze real datasets and gain the confidence and skills to undertake more sophisticated analyses. Although accessible with any statistical software, the text encourages a reliance on R. For those new to R, an introduction to the software is available in an appendix. The book also includes end-of-chapter exercises as well as an entire chapter of case exercises that help students apply their knowledge to larger datasets and learn more about approaches specific to the life sciences.

Introduction to Statistical Data Analysis for the Life Sciences


Introduction to Statistical Data Analysis for the Life Sciences

Author: Claus Thorn Ekstrom

language: en

Publisher: CRC Press

Release Date: 2014-11-06


DOWNLOAD





A Hands-On Approach to Teaching Introductory StatisticsExpanded with over 100 more pages, Introduction to Statistical Data Analysis for the Life Sciences, Second Edition presents the right balance of data examples, statistical theory, and computing to teach introductory statistics to students in the life sciences. This popular textbook covers the m

Introduction to Statistical Data Analysis for the Life Sciences, Second Edition


Introduction to Statistical Data Analysis for the Life Sciences, Second Edition

Author: Claus Thorn Ekstrom

language: en

Publisher: Chapman & Hall/CRC

Release Date: 2017-11-15


DOWNLOAD





A Hands-On Approach to Teaching Introductory Statistics Expanded with over 100 more pages, Introduction to Statistical Data Analysis for the Life Sciences, Second Edition presents the right balance of data examples, statistical theory, and computing to teach introductory statistics to students in the life sciences. This popular textbook covers the mathematics underlying classical statistical analysis, the modeling aspects of statistical analysis and the biological interpretation of results, and the application of statistical software in analyzing real-world problems and datasets. New to the Second Edition A new chapter on non-linear regression models A new chapter that contains examples of complete data analyses, illustrating how a full-fledged statistical analysis is undertaken Additional exercises in most chapters A summary of statistical formulas related to the specific designs used to teach the statistical concepts This text provides a computational toolbox that enables students to analyze real datasets and gain the confidence and skills to undertake more sophisticated analyses. Although accessible with any statistical software, the text encourages a reliance on R. For those new to R, an introduction to the software is available in an appendix. The book also includes end-of-chapter exercises as well as an entire chapter of case exercises that help students apply their knowledge to larger datasets and learn more about approaches specific to the life sciences.


Recent Search