Introduction To Reaction Diffusion Equations


Download Introduction To Reaction Diffusion Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Reaction Diffusion Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Introduction to Reaction-Diffusion Equations


Introduction to Reaction-Diffusion Equations

Author: King-Yeung Lam

language: en

Publisher: Springer

Release Date: 2022-12-02


DOWNLOAD





This book introduces some basic mathematical tools in reaction-diffusion models, with applications to spatial ecology and evolutionary biology. It is divided into four parts. The first part is an introduction to the maximum principle, the theory of principal eigenvalues for elliptic and periodic-parabolic equations and systems, and the theory of principal Floquet bundles. The second part concerns the applications in spatial ecology. We discuss the dynamics of a single species and two competing species, as well as some recent progress on N competing species in bounded domains. Some related results on stream populations and phytoplankton populations are also included. We also discuss the spreading properties of a single species in an unbounded spatial domain, as modeled by the Fisher-KPP equation. The third part concerns the applications in evolutionary biology. We describe the basic notions of adaptive dynamics, such as evolutionarily stable strategies and evolutionary branching points, in the context of a competition model of stream populations. We also discuss a class of selection-mutation models describing a population structured along a continuous phenotypical trait. The fourth part consists of several appendices, which present a self-contained treatment of some basic abstract theories in functional analysis and dynamical systems. Topics include the Krein-Rutman theorem for linear and nonlinear operators, as well as some elements of monotone dynamical systems and abstract competition systems. Most of the book is self-contained and it is aimed at graduate students and researchers who are interested in the theory and applications of reaction-diffusion equations.

A Closer Look of Nonlinear Reaction-Diffusion Equations


A Closer Look of Nonlinear Reaction-Diffusion Equations

Author: L. Rajendran

language: en

Publisher: Nova Science Publishers

Release Date: 2020-08-26


DOWNLOAD





By using mathematical models to describe the physical, biological or chemical phenomena, one of the most common results is either a differential equation or a system of differential equations, together with the correct boundary and initial conditions. The determination and interpretation of their solution are at the base of applied mathematics. Hence the analytical and numerical study of the differential equation is very much essential for all theoretical and experimental researchers, and this book helps to develop skills in this area.Recently non-linear differential equations were widely used to model many of the interesting and relevant phenomena found in many fields of science and technology on a mathematical basis. This problem is to inspire them in various fields such as economics, medical biology, plasma physics, particle physics, differential geometry, engineering, signal processing, electrochemistry and materials science.This book contains seven chapters and practical applications to the problems of the real world. The first chapter is specifically for those with limited mathematical background. Chapter one presents the introduction of non-linear reaction-diffusion systems, various boundary conditions and examples. Real-life application of non-linear reaction-diffusion in different fields with some important non-linear equations is also discussed. In Chapter 2, mathematical preliminaries and various advanced methods of solving non-linear differential equations such as Homotopy perturbation method, variational iteration method, exponential function method etc. are described with examples.Steady and non-steady state reaction-diffusion equations in the plane sheet (chapter 3), cylinder (chapter 4) and spherical (chapter 5) are analyzed. The analytical results published by various researchers in referred journals during 2007-2020 have been addressed in these chapters 4 to 6, and this leads to conclusions and recommendations on what approaches to use on non-linear reaction-diffusion equations.Convection-diffusion problems arise very often in applied sciences and engineering. Non-linear convection-diffusion equations and corresponding analytical solutions in various fields of chemical sciences are discussed in chapter6. Numerical methods are used to provide approximate results for the non-linear problems, and their importance is felt when it is impossible or difficult to solve a given problem analytically. Chapter 7 identifies some of the numerical methods for finding solutions to non-linear differential equations.

Spatial Ecology via Reaction-Diffusion Equations


Spatial Ecology via Reaction-Diffusion Equations

Author: Robert Stephen Cantrell

language: en

Publisher: John Wiley & Sons

Release Date: 2004-01-09


DOWNLOAD





Many ecological phenomena may be modelled using apparently random processes involving space (and possibly time). Such phenomena are classified as spatial in their nature and include all aspects of pollution. This book addresses the problem of modelling spatial effects in ecology and population dynamics using reaction-diffusion models. * Rapidly expanding area of research for biologists and applied mathematicians * Provides a unified and coherent account of methods developed to study spatial ecology via reaction-diffusion models * Provides the reader with the tools needed to construct and interpret models * Offers specific applications of both the models and the methods * Authors have played a dominant role in the field for years Essential reading for graduate students and researchers working with spatial modelling from mathematics, statistics, ecology, geography and biology.