Introduction To Quantum Physics And Information Processing

Download Introduction To Quantum Physics And Information Processing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Quantum Physics And Information Processing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Introduction to Quantum Physics and Information Processing

An Elementary Guide to the State of the Art in the Quantum Information Field Introduction to Quantum Physics and Information Processing guides beginners in understanding the current state of research in the novel, interdisciplinary area of quantum information. Suitable for undergraduate and beginning graduate students in physics, mathematics, or engineering, the book goes deep into issues of quantum theory without raising the technical level too much. The text begins with the basics of quantum mechanics required to understand how two-level systems are used as qubits. It goes on to show how quantum properties are exploited in devising algorithms for problems that are more efficient than the classical counterpart. It then explores more sophisticated notions that form the backbone of quantum information theory. Requiring no background in quantum physics, this text prepares readers to follow more advanced books and research material in this rapidly growing field. Examples, detailed discussions, exercises, and problems facilitate a thorough, real-world understanding of quantum information.
Introduction to Quantum Information Science

This book presents the basics of quantum information, e.g., foundation of quantum theory, quantum algorithms, quantum entanglement, quantum entropies, quantum coding, quantum error correction and quantum cryptography. The required knowledge is only elementary calculus and linear algebra. This way the book can be understood by undergraduate students. In order to study quantum information, one usually has to study the foundation of quantum theory. This book describes it from more an operational viewpoint which is suitable for quantum information while traditional textbooks of quantum theory lack this viewpoint. The current book bases on Shor's algorithm, Grover's algorithm, Deutsch-Jozsa's algorithm as basic algorithms. To treat several topics in quantum information, this book covers several kinds of information quantities in quantum systems including von Neumann entropy. The limits of several kinds of quantum information processing are given. As important quantum protocols, this book contains quantum teleportation, quantum dense coding, quantum data compression. In particular conversion theory of entanglement via local operation and classical communication are treated too. This theory provides the quantification of entanglement, which coincides with von Neumann entropy. The next part treats the quantum hypothesis testing. The decision problem of two candidates of the unknown state are given. The asymptotic performance of this problem is characterized by information quantities. Using this result, the optimal performance of classical information transmission via noisy quantum channel is derived. Quantum information transmission via noisy quantum channel by quantum error correction are discussed too. Based on this topic, the secure quantum communication is explained. In particular, the quantification of quantum security which has not been treated in existing book is explained. This book treats quantum cryptography from a more practical viewpoint.
Quantum Theory

This text, for the first time, introduces quantum theory from the perspective of both the physical foundations and practical applications - from quantum computers to secure communication. It requires minimal mathematics and virtually no prior knowledge of physics, and is accessible to beginning undergraduates and students of related disciplines.