Introduction To Physical Mathematics


Download Introduction To Physical Mathematics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Physical Mathematics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Physical Mathematics


Physical Mathematics

Author: Kevin Cahill

language: en

Publisher: Cambridge University Press

Release Date: 2013-03-14


DOWNLOAD





Unique in its clarity, examples and range, Physical Mathematics explains as simply as possible the mathematics that graduate students and professional physicists need in their courses and research. The author illustrates the mathematics with numerous physical examples drawn from contemporary research. In addition to basic subjects such as linear algebra, Fourier analysis, complex variables, differential equations and Bessel functions, this textbook covers topics such as the singular-value decomposition, Lie algebras, the tensors and forms of general relativity, the central limit theorem and Kolmogorov test of statistics, the Monte Carlo methods of experimental and theoretical physics, the renormalization group of condensed-matter physics and the functional derivatives and Feynman path integrals of quantum field theory.

Introduction to Physical Mathematics


Introduction to Physical Mathematics

Author: Philip G. Harper

language: en

Publisher: CUP Archive

Release Date: 1985-03-07


DOWNLOAD





Directed primarily at college and university undergraduates, this book covers at basic level the essential applications of mathematics to the physical sciences. It contains all the usual topics covered in a first-year course such as vectors, matrices, differential equations, basic mathematical functions and their analysis, and power series. There is a strong emphasis on qualitative understanding (such as curve sketching) and practical methods of solution. The latter take due account of the impact of computers on the subject. The principles of mathematical expression are illustrated by copious examples taken from a wide range of topics in physics and chemistry. Each of the short chapters concludes with a summary and a large number of problems.

Topics in Physical Mathematics


Topics in Physical Mathematics

Author: Kishore Marathe

language: en

Publisher: Springer Science & Business Media

Release Date: 2010-08-09


DOWNLOAD





As many readers will know, the 20th century was a time when the fields of mathematics and the sciences were seen as two separate entities. Caused by the rapid growth of the physical sciences and an increasing abstraction in mathematical research, each party, physicists and mathematicians alike, suffered a misconception; not only of the opposition’s theoretical underpinning, but of how the two subjects could be intertwined and effectively utilized. One sub-discipline that played a part in the union of the two subjects is Theoretical Physics. Breaking it down further came the fundamental theories, Relativity and Quantum theory, and later on Yang-Mills theory. Other areas to emerge in this area are those derived from the works of Donaldson, Chern-Simons, Floer-Fukaya, and Seiberg-Witten. Aimed at a wide audience, Physical Topics in Mathematics demonstrates how various physical theories have played a crucial role in the developments of Mathematics and in particular, Geometric Topology. Issues are studied in great detail, and the book steadfastly covers the background of both Mathematics and Theoretical Physics in an effort to bring the reader to a deeper understanding of their interaction. Whilst the world of Theoretical Physics and Mathematics is boundless; it is not the intention of this book to cover its enormity. Instead, it seeks to lead the reader through the world of Physical Mathematics; leaving them with a choice of which realm they wish to visit next.