Introduction To Photon Communication

Download Introduction To Photon Communication PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Photon Communication book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Introduction to Photon Communication

Author: Cherif Bendjaballah
language: en
Publisher: Springer Science & Business Media
Release Date: 2008-09-11
In recent years, progress in the generation of squeezed states of light, mainly characterized by a reduced noise property, has stimulated important work in relation to their potential use to improve the sensitivity of optical communication systems. These notes are devoted to the detection and information processing of optical signals at very low levels of power. A survey of recent developments from the quantum and classical points of view is presented. Ultimate limits of performance under the criteria of detection and information are established. Some of the results are detailed and may be utilized for the design of practical systems of communication using present technology. The book addresses physicists and engineers interested in present and future developments in optical communications.
An Introduction to Quantum Communication Networks

Author: Mohsen Razavi
language: en
Publisher: Morgan & Claypool Publishers
Release Date: 2018-05-25
With the fast pace of developments in quantum technologies, it is more than ever necessary to make the new generation of students in science and engineering familiar with the key ideas behind such disruptive systems. This book intends to fill such a gap between experts and non-experts in the field by providing the reader with the basic tools needed to understand the latest developments in quantum communications and its future directions. This is not only to expand the audience knowledge but also to attract new talents to this flourishing field. To that end, the book as a whole does not delve into much detail and most often suffices to provide some insight into the problem in hand. The primary users of the book will then be students in science and engineering in their final year of undergraduate studies or early years of their post-graduate programmes.
An Introduction to Optical Wireless Mobile Communication

The use of the optical spectrum for wireless communications has gained significant interest in recent years. Applications range from low-rate simplex transmission links using existing embedded CMOS cameras in smartphones, referred to as optical camera communications (OCC), mobile light fidelity (LiFi) networking in homes, offices, urban and sub-sea environments to free-space gigabit interconnects in data centers and point-to-point long-range wireless backhaul links outdoors and in space. This exciting book focuses on the use of optical wireless communications (OWC) for mobile use cases. The book discusses existing conventional radio frequency (RF)-based wireless access technology and presents the challenges that can impact the requirements of the future wave of new wireless services in the context of artificial intelligence (AI) driven autonomous systems and machine-type communications. The relationship between visible light communications (VLC) and light fidelity (LiFi), is explored, and the major advantages of VLC and LiFi such as security and data density, and discuss existing research challenges are also introduced. Channel modeling techniques are provided for mobile multiuser scenarios, and will introduce key building blocks to achieve LiFi cellular networks achieving orders of magnitude improvements of area spectral efficiency compared to state-of-the-art. Challenges that arise from moving from a static point-to-point visible light link to a LiFi network that is capable of serving hundreds of mobile and fixed nodes are discussed. An overview of recent standardization activities and the commercialization challenges of this disruptive technology is also provided.