Introduction To Nonlinear Optimization Theory Algorithms And Applications With Matlab By Amir Beck
Download Introduction To Nonlinear Optimization Theory Algorithms And Applications With Matlab By Amir Beck PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Nonlinear Optimization Theory Algorithms And Applications With Matlab By Amir Beck book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Introduction to Nonlinear Optimization
This book provides the foundations of the theory of nonlinear optimization as well as some related algorithms and presents a variety of applications from diverse areas of applied sciences. The author combines three pillars of optimization-theoretical and algorithmic foundation, familiarity with various applications, and the ability to apply the theory and algorithms on actual problems--and rigorously and gradually builds the connection between theory, algorithms, applications, and implementation.
Introduction to Nonlinear Optimization
Built on the framework of the successful first edition, this book serves as a modern introduction to the field of optimization. The author’s objective is to provide the foundations of theory and algorithms of nonlinear optimization as well as to present a variety of applications from diverse areas of applied sciences. Introduction to Nonlinear Optimization gradually yet rigorously builds connections between theory, algorithms, applications, and actual implementation. The book contains several topics not typically included in optimization books, such as optimality conditions in sparsity constrained optimization, hidden convexity, and total least squares. Readers will discover a wide array of applications such as circle fitting, Chebyshev center, the Fermat–Weber problem, denoising, clustering, total least squares, and orthogonal regression. These applications are studied both theoretically and algorithmically, illustrating concepts such as duality. Python and MATLAB programs are used to show how the theory can be implemented. The extremely popular CVX toolbox (MATLAB) and CVXPY module (Python) are described and used. More than 250 theoretical, algorithmic, and numerical exercises enhance the reader's understanding of the topics. (More than 70 of the exercises provide detailed solutions, and many others are provided with final answers.) The theoretical and algorithmic topics are illustrated by Python and MATLAB examples. This book is intended for graduate or advanced undergraduate students in mathematics, computer science, electrical engineering, and potentially other engineering disciplines.
Problems and Solutions for Integer and Combinatorial Optimization
The only book offering solved exercises for integer and combinatorial optimization, this book contains 102 classroom tested problems of varying scope and difficulty chosen from a plethora of topics and applications. It has an associated website containing additional problems, lecture notes, and suggested readings. Topics covered include modeling capabilities of integer variables, the Branch-and-Bound method, cutting planes, network optimization models, shortest path problems, optimum tree problems, maximal cardinality matching problems, matching-covering duality, symmetric and asymmetric TSP, 2-matching and 1-tree relaxations, VRP formulations, and dynamic programming. Problems and Solutions for Integer and Combinatorial Optimization: Building Skills in Discrete Optimization is meant for undergraduate and beginning graduate students in mathematics, computer science, and engineering to use for self-study and for instructors to use in conjunction with other course material and when teaching courses in discrete optimization.