Introduction To Nonlinear Dispersive Equations

Download Introduction To Nonlinear Dispersive Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Nonlinear Dispersive Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Introduction to Nonlinear Dispersive Equations

Author: Felipe Linares
language: en
Publisher: Springer Science & Business Media
Release Date: 2009-02-21
The aim of this textbook is to introduce the theory of nonlinear dispersive equations to graduate students in a constructive way. The first three chapters are dedicated to preliminary material, such as Fourier transform, interpolation theory and Sobolev spaces. The authors then proceed to use the linear Schrodinger equation to describe properties enjoyed by general dispersive equations. This information is then used to treat local and global well-posedness for the semi-linear Schrodinger equations. The end of each chapter contains recent developments and open problems, as well as exercises.
Introduction to Nonlinear Dispersive Equations

This textbook introduces the well-posedness theory for initial-value problems of nonlinear, dispersive partial differential equations, with special focus on two key models, the Korteweg–de Vries equation and the nonlinear Schrödinger equation. A concise and self-contained treatment of background material (the Fourier transform, interpolation theory, Sobolev spaces, and the linear Schrödinger equation) prepares the reader to understand the main topics covered: the initial-value problem for the nonlinear Schrödinger equation and the generalized Korteweg–de Vries equation, properties of their solutions, and a survey of general classes of nonlinear dispersive equations of physical and mathematical significance. Each chapter ends with an expert account of recent developments and open problems, as well as exercises. The final chapter gives a detailed exposition of local well-posedness for the nonlinear Schrödinger equation, taking the reader to the forefront of recent research. The second edition of Introduction to Nonlinear Dispersive Equations builds upon the success of the first edition by the addition of updated material on the main topics, an expanded bibliography, and new exercises. Assuming only basic knowledge of complex analysis and integration theory, this book will enable graduate students and researchers to enter this actively developing field.
Nonlinear Dispersive Equations

"Starting only with a basic knowledge of graduate real analysis and Fourier analysis, the text first presents basic nonlinear tools such as the bootstrap method and perturbation theory in the simpler context of nonlinear ODE, then introduces the harmonic analysis and geometric tools used to control linear dispersive PDE. These methods are then combined to study four model nonlinear dispersive equations. Through extensive exercises, diagrams, and informal discussion, the book gives a rigorous theoretical treatment of the material, the real-world intuition and heuristics that underlie the subject, as well as mentioning connections with other areas of PDE, harmonic analysis, and dynamical systems.".