Introduction To Non Linear Optimization

Download Introduction To Non Linear Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Non Linear Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Introduction to Nonlinear and Global Optimization

Nonlinear Optimization is an intriguing area of study where mathematical theory, algorithms and applications converge to calculate the optimal values of continuous functions. Within this subject, Global Optimization aims at finding global optima for difficult problems in which many local optima might exist. This book provides a compelling introduction to global and non-linear optimization providing interdisciplinary readers with a strong background to continue their studies into these and other related fields. The book offers insight in relevant concepts such as "region of attraction" and "Branch-and-Bound" by elaborating small numerical examples and exercises for the reader to follow.
Introduction to Nonlinear Optimization

This book provides the foundations of the theory of nonlinear optimization as well as some related algorithms and presents a variety of applications from diverse areas of applied sciences. The author combines three pillars of optimization?theoretical and algorithmic foundation, familiarity with various applications, and the ability to apply the theory and algorithms on actual problems?and rigorously and gradually builds the connection between theory, algorithms, applications, and implementation. Readers will find more than 170 theoretical, algorithmic, and numerical exercises that deepen and enhance the reader's understanding of the topics. The author includes offers several subjects not typically found in optimization books?for example, optimality conditions in sparsity-constrained optimization, hidden convexity, and total least squares. The book also offers a large number of applications discussed theoretically and algorithmically, such as circle fitting, Chebyshev center, the Fermat?Weber problem, denoising, clustering, total least squares, and orthogonal regression and theoretical and algorithmic topics demonstrated by the MATLAB? toolbox CVX and a package of m-files that is posted on the book?s web site.