Introduction To Neural And Cognitive Modeling


Download Introduction To Neural And Cognitive Modeling PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Neural And Cognitive Modeling book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Introduction to Neural and Cognitive Modeling


Introduction to Neural and Cognitive Modeling

Author: Daniel S. Levine

language: en

Publisher: Psychology Press

Release Date: 2000-02


DOWNLOAD





This thoroughly, thoughtfully revised edition of a very successful textbook makes the principles and the details of neural network modeling accessible to cognitive scientists of all varieties as well as to others interested in these models. Research since the publication of the first edition has been systematically incorporated into a framework of proven pedagogical value. Features of the second edition include: * A new section on spatiotemporal pattern processing * Coverage of ARTMAP networks (the supervised version of adaptive resonance networks) and recurrent back-propagation networks * A vastly expanded section on models of specific brain areas, such as the cerebellum, hippocampus, basal ganglia, and visual and motor cortex * Up-to-date coverage of applications of neural networks in areas such as combinatorial optimization and knowledge representation As in the first edition, the text includes extensive introductions to neuroscience and to differential and difference equations as appendices for students without the requisite background in these areas. As graphically revealed in the flowchart in the front of the book, the text begins with simpler processes and builds up to more complex multilevel functional systems. For more information visit the author's personal Web site at www.uta.edu/psychology/faculty/levine/

Introduction to Neural and Cognitive Modeling


Introduction to Neural and Cognitive Modeling

Author: Daniel S. Levine

language: en

Publisher: Psychology Press

Release Date: 2000-02-01


DOWNLOAD





This thoroughly, thoughtfully revised edition of a very successful textbook makes the principles and the details of neural network modeling accessible to cognitive scientists of all varieties as well as to others interested in these models. Research since the publication of the first edition has been systematically incorporated into a framework of proven pedagogical value. Features of the second edition include: * A new section on spatiotemporal pattern processing * Coverage of ARTMAP networks (the supervised version of adaptive resonance networks) and recurrent back-propagation networks * A vastly expanded section on models of specific brain areas, such as the cerebellum, hippocampus, basal ganglia, and visual and motor cortex * Up-to-date coverage of applications of neural networks in areas such as combinatorial optimization and knowledge representation As in the first edition, the text includes extensive introductions to neuroscience and to differential and difference equations as appendices for students without the requisite background in these areas. As graphically revealed in the flowchart in the front of the book, the text begins with simpler processes and builds up to more complex multilevel functional systems. For more information visit the author's personal Web site at www.uta.edu/psychology/faculty/levine/

Introduction to Neural and Cognitive Modeling


Introduction to Neural and Cognitive Modeling

Author: Daniel S. Levine

language: en

Publisher: Routledge

Release Date: 2018-10-26


DOWNLOAD





This textbook provides a general introduction to the field of neural networks. Thoroughly revised and updated from the previous editions of 1991 and 2000, the current edition concentrates on networks for modeling brain processes involved in cognitive and behavioral functions. Part one explores the philosophy of modeling and the field’s history starting from the mid-1940s, and then discusses past models of associative learning and of short-term memory that provide building blocks for more complex recent models. Part two of the book reviews recent experimental findings in cognitive neuroscience and discusses models of conditioning, categorization, category learning, vision, visual attention, sequence learning, behavioral control, decision making, reasoning, and creativity. The book presents these models both as abstract ideas and through examples and concrete data for specific brain regions. The book includes two appendices to help ground the reader: one reviewing the mathematics used in network modeling, and a second reviewing basic neuroscience at both the neuron and brain region level. The book also includes equations, practice exercises, and thought experiments.