Introduction To Linear Algebra And Differential Equations


Download Introduction To Linear Algebra And Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Linear Algebra And Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Introduction to Linear Algebra and Differential Equations


Introduction to Linear Algebra and Differential Equations

Author: John W. Dettman

language: en

Publisher: Courier Corporation

Release Date: 2012-10-05


DOWNLOAD





Excellent introductory text focuses on complex numbers, determinants, orthonormal bases, symmetric and hermitian matrices, first order non-linear equations, linear differential equations, Laplace transforms, Bessel functions, more. Includes 48 black-and-white illustrations. Exercises with solutions. Index.

Differential Equations and Linear Algebra


Differential Equations and Linear Algebra

Author: Gilbert Strang

language: en

Publisher: Wellesley-Cambridge Press

Release Date: 2015-02-12


DOWNLOAD





Differential equations and linear algebra are two central topics in the undergraduate mathematics curriculum. This innovative textbook allows the two subjects to be developed either separately or together, illuminating the connections between two fundamental topics, and giving increased flexibility to instructors. It can be used either as a semester-long course in differential equations, or as a one-year course in differential equations, linear algebra, and applications. Beginning with the basics of differential equations, it covers first and second order equations, graphical and numerical methods, and matrix equations. The book goes on to present the fundamentals of vector spaces, followed by eigenvalues and eigenvectors, positive definiteness, integral transform methods and applications to PDEs. The exposition illuminates the natural correspondence between solution methods for systems of equations in discrete and continuous settings. The topics draw on the physical sciences, engineering and economics, reflecting the author's distinguished career as an applied mathematician and expositor.

Linear Algebra to Differential Equations


Linear Algebra to Differential Equations

Author: J. Vasundhara Devi

language: en

Publisher: CRC Press

Release Date: 2021


DOWNLOAD





Linear Algebra to Differential Equations concentrates on the essential topics necessary for all engineering students in general and computer science branch students, in particular. Specifically, the topics dealt will help the reader in applying linear algebra as a tool. The advent of high-speed computers has paved the way for studying large systems of linear equations as well as large systems of linear differential equations. Along with the standard numerical methods, methods that curb the progress of error are given for solving linear systems of equations. The topics of linear algebra and differential equations are linked by Kronecker products and calculus of matrices. These topics are useful in dealing with linear systems of differential equations and matrix differential equations. Differential equations are treated in terms of vector and matrix differential systems, as they naturally arise while formulating practical problems. The essential concepts dealing with the solutions and their stability are briefly presented to motivate the reader towards further investigation. This book caters to the needs of Engineering students in general and in particular, to students of Computer Science & Engineering, Artificial Intelligence, Machine Learning and Robotics. Further, the book provides a quick and complete overview of linear algebra and introduces linear differential systems, serving the basic requirements of scientists and researchers in applied fields. Features Provides complete basic knowledge of the subject Exposes the necessary topics lucidly Introduces the abstraction and at the same time is down to earth Highlights numerical methods and approaches that are more useful Essential techniques like SVD and PCA are given Applications (both classical and novel) bring out similarities in various disciplines: Illustrative examples for every concept: A brief overview of techniques that hopefully serves the present and future needs of students and scientists.