Introduction To Inverse Problems For Differential Equations

Download Introduction To Inverse Problems For Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Inverse Problems For Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Introduction to Inverse Problems for Differential Equations

Author: Alemdar Hasanov Hasanoğlu
language: en
Publisher: Springer Nature
Release Date: 2021-08-02
This book presents a systematic exposition of the main ideas and methods in treating inverse problems for PDEs arising in basic mathematical models, though it makes no claim to being exhaustive. Mathematical models of most physical phenomena are governed by initial and boundary value problems for PDEs, and inverse problems governed by these equations arise naturally in nearly all branches of science and engineering. The book’s content, especially in the Introduction and Part I, is self-contained and is intended to also be accessible for beginning graduate students, whose mathematical background includes only basic courses in advanced calculus, PDEs and functional analysis. Further, the book can be used as the backbone for a lecture course on inverse and ill-posed problems for partial differential equations. In turn, the second part of the book consists of six nearly-independent chapters. The choice of these chapters was motivated by the fact that the inverse coefficient and source problems considered here are based on the basic and commonly used mathematical models governed by PDEs. These chapters describe not only these inverse problems, but also main inversion methods and techniques. Since the most distinctive features of any inverse problems related to PDEs are hidden in the properties of the corresponding solutions to direct problems, special attention is paid to the investigation of these properties. For the second edition, the authors have added two new chapters focusing on real-world applications of inverse problems arising in wave and vibration phenomena. They have also revised the whole text of the first edition.
Inverse Problems for Partial Differential Equations

Author: Victor Isakov
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-06-29
This book describes the contemporary state of the theory and some numerical aspects of inverse problems in partial differential equations. The topic is of sub stantial and growing interest for many scientists and engineers, and accordingly to graduate students in these areas. Mathematically, these problems are relatively new and quite challenging due to the lack of conventional stability and to nonlinearity and nonconvexity. Applications include recovery of inclusions from anomalies of their gravitational fields; reconstruction of the interior of the human body from exterior electrical, ultrasonic, and magnetic measurements, recovery of interior structural parameters of detail of machines and of the underground from similar data (non-destructive evaluation); and locating flying or navigated objects from their acoustic or electromagnetic fields. Currently, there are hundreds of publica tions containing new and interesting results. A purpose of the book is to collect and present many of them in a readable and informative form. Rigorous proofs are presented whenever they are relatively short and can be demonstrated by quite general mathematical techniques. Also, we prefer to present results that from our point of view contain fresh and promising ideas. In some cases there is no com plete mathematical theory, so we give only available results. We do not assume that a reader possesses an enormous mathematical technique. In fact, a moderate knowledge of partial differential equations, of the Fourier transform, and of basic functional analysis will suffice.
Computational Methods for Inverse Problems

Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.