Introduction To Information Retrieval And Quantum Mechanics


Download Introduction To Information Retrieval And Quantum Mechanics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Information Retrieval And Quantum Mechanics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Introduction to Information Retrieval and Quantum Mechanics


Introduction to Information Retrieval and Quantum Mechanics

Author: Massimo Melucci

language: en

Publisher: Springer

Release Date: 2015-12-08


DOWNLOAD





This book introduces the quantum mechanical framework to information retrieval scientists seeking a new perspective on foundational problems. As such, it concentrates on the main notions of the quantum mechanical framework and describes an innovative range of concepts and tools for modeling information representation and retrieval processes. The book is divided into four chapters. Chapter 1 illustrates the main modeling concepts for information retrieval (including Boolean logic, vector spaces, probabilistic models, and machine-learning based approaches), which will be examined further in subsequent chapters. Next, chapter 2 briefly explains the main concepts of the quantum mechanical framework, focusing on approaches linked to information retrieval such as interference, superposition and entanglement. Chapter 3 then reviews the research conducted at the intersection between information retrieval and the quantum mechanical framework. The chapter is subdivided into a number of topics, and each description ends with a section suggesting the most important reference resources. Lastly, chapter 4 offers suggestions for future research, briefly outlining the most essential and promising research directions to fully leverage the quantum mechanical framework for effective and efficient information retrieval systems. This book is especially intended for researchers working in information retrieval, database systems and machine learning who want to acquire a clear picture of the potential offered by the quantum mechanical framework in their own research area. Above all, the book offers clear guidance on whether, why and when to effectively use the mathematical formalism and the concepts of the quantum mechanical framework to address various foundational issues in information retrieval.

Advanced Topics in Information Retrieval


Advanced Topics in Information Retrieval

Author: Massimo Melucci

language: en

Publisher: Springer Science & Business Media

Release Date: 2011-06-10


DOWNLOAD





Information retrieval is the science concerned with the effective and efficient retrieval of documents starting from their semantic content. It is employed to fulfill some information need from a large number of digital documents. Given the ever-growing amount of documents available and the heterogeneous data structures used for storage, information retrieval has recently faced and tackled novel applications. In this book, Melucci and Baeza-Yates present a wide-spectrum illustration of recent research results in advanced areas related to information retrieval. Readers will find chapters on e.g. aggregated search, digital advertising, digital libraries, discovery of spam and opinions, information retrieval in context, multimedia resource discovery, quantum mechanics applied to information retrieval, scalability challenges in web search engines, and interactive information retrieval evaluation. All chapters are written by well-known researchers, are completely self-contained and comprehensive, and are complemented by an integrated bibliography and subject index. With this selection, the editors provide the most up-to-date survey of topics usually not addressed in depth in traditional (text)books on information retrieval. The presentation is intended for a wide audience of people interested in information retrieval: undergraduate and graduate students, post-doctoral researchers, lecturers, and industrial researchers.

Quantum-Like Models for Information Retrieval and Decision-Making


Quantum-Like Models for Information Retrieval and Decision-Making

Author: Diederik Aerts

language: en

Publisher: Springer Nature

Release Date: 2019-09-09


DOWNLOAD





Recent years have been characterized by tremendous advances in quantum information and communication, both theoretically and experimentally. In addition, mathematical methods of quantum information and quantum probability have begun spreading to other areas of research, beyond physics. One exciting new possibility involves applying these methods to information science and computer science (without direct relation to the problems of creation of quantum computers). The aim of this Special Volume is to encourage scientists, especially the new generation (master and PhD students), working in computer science and related mathematical fields to explore novel possibilities based on the mathematical formalisms of quantum information and probability. The contributing authors, who hail from various countries, combine extensive quantum methods expertise with real-world experience in application of these methods to computer science. The problems considered chiefly concern quantum information-probability based modeling in the following areas: information foraging; interactive quantum information access; deep convolutional neural networks; decision making; quantum dynamics; open quantum systems; and theory of contextual probability. The book offers young scientists (students, PhD, postdocs) an essential introduction to applying the mathematical apparatus of quantum theory to computer science, information retrieval, and information processes.