Introduction To Imaging From Scattered Fields

Download Introduction To Imaging From Scattered Fields PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Imaging From Scattered Fields book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Introduction to Imaging from Scattered Fields

Obtain the Best Estimate of a Strongly Scattering Object from Limited Scattered Field Data Introduction to Imaging from Scattered Fields presents an overview of the challenging problem of determining information about an object from measurements of the field scattered from that object. It covers widely used approaches to recover information about the objects and examines the assumptions made a priori about the object and the consequences of recovering object information from limited numbers of noisy measurements of the scattered fields. The book explores the strengths and weaknesses of using inverse methods for weak scattering. These methods, including Fourier-based signal and image processing techniques, allow more straightforward inverse algorithms to be exploited based on a simple mapping of scattered field data. The authors also discuss their recent approach based on a nonlinear filtering step in the inverse algorithm. They illustrate how to use this algorithm through numerous two-dimensional electromagnetic scattering examples. MATLAB® code is provided to help readers quickly apply the approach to a wide variety of inverse scattering problems. In later chapters of the book, the authors focus on important and often forgotten overarching constraints associated with exploiting inverse scattering algorithms. They explain how the number of degrees of freedom associated with any given scattering experiment can be found and how this allows one to specify a minimum number of data that should be measured. They also describe how the prior discrete Fourier transform (PDFT) algorithm helps in estimating the properties of an object from scattered field measurements. The PDFT restores stability and improves estimates of the object even with severely limited data (provided it is sufficient to meet a criterion based on the number of degrees of freedom).
Computational Methods for Electromagnetic Inverse Scattering

A comprehensive and updated overview of the theory, algorithms and applications of for electromagnetic inverse scattering problems Offers the recent and most important advances in inverse scattering grounded in fundamental theory, algorithms and practical engineering applications Covers the latest, most relevant inverse scattering techniques like signal subspace methods, time reversal, linear sampling, qualitative methods, compressive sensing, and noniterative methods Emphasizes theory, mathematical derivation and physical insights of various inverse scattering problems Written by a leading expert in the field
Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering

More and more researchers engage into investigation of electromagnetic applications, especially these connected with mechatronics, information technologies, medicine, biology and material sciences. It is readily seen when looking at the content of the book that computational techniques, which were under development during the last three decades and are still being developed, serve as good tools for discovering new electromagnetic phenomena. It means that the field of computational electromagnetics belongs to an application area rather than to a research area. This publication aims at joining theory and practice, thus the majority of papers are deeply rooted in engineering problems, being simultaneously of high theoretical level. The editors hope to touch the heart of the matter in electromagnetism. The book focuses on the following issues: Computational Electromagnetics; Electromagnetic Engineering; Coupled Field and Special Applications; Micro- and Special Devices; Bioelectromagnetics and Electromagnetic Hazard; and Magnetic Material Modeling.