Introduction To Geometric Algebra Computing

Download Introduction To Geometric Algebra Computing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Geometric Algebra Computing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Introduction to Geometric Algebra Computing

From the Foreword: "Dietmar Hildenbrand's new book, Introduction to Geometric Algebra Computing, in my view, fills an important gap in Clifford's geometric algebra literature...I can only congratulate the author for the daring simplicity of his novel educational approach taken in this book, consequently combined with hands on computer based exploration. Without noticing, the active reader will thus educate himself in elementary geometric algebra algorithm development, geometrically intuitive, highly comprehensible, and fully optimized." --Eckhard Hitzer, International Christian University, Tokyo, Japan Geometric Algebra is a very powerful mathematical system for an easy and intuitive treatment of geometry, but the community working with it is still very small. The main goal of this book is to close this gap with an introduction to Geometric Algebra from an engineering/computing perspective. This book is intended to give a rapid introduction to computing with Geometric Algebra and its power for geometric modeling. From the geometric objects point of view, it focuses on the most basic ones, namely points, lines and circles. This algebra is called Compass Ruler Algebra, since it is comparable to working with a compass and ruler. The book explores how to compute with these geometric objects, and their geometric operations and transformations, in a very intuitive way. The book follows a top-down approach, and while it focuses on 2D, it is also easily expandable to 3D computations. Algebra in engineering applications such as computer graphics, computer vision and robotics are also covered.
Foundations of Geometric Algebra Computing

Author: Dietmar Hildenbrand
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-31
The author defines “Geometric Algebra Computing” as the geometrically intuitive development of algorithms using geometric algebra with a focus on their efficient implementation, and the goal of this book is to lay the foundations for the widespread use of geometric algebra as a powerful, intuitive mathematical language for engineering applications in academia and industry. The related technology is driven by the invention of conformal geometric algebra as a 5D extension of the 4D projective geometric algebra and by the recent progress in parallel processing, and with the specific conformal geometric algebra there is a growing community in recent years applying geometric algebra to applications in computer vision, computer graphics, and robotics. This book is organized into three parts: in Part I the author focuses on the mathematical foundations; in Part II he explains the interactive handling of geometric algebra; and in Part III he deals with computing technology for high-performance implementations based on geometric algebra as a domain-specific language in standard programming languages such as C++ and OpenCL. The book is written in a tutorial style and readers should gain experience with the associated freely available software packages and applications. The book is suitable for students, engineers, and researchers in computer science, computational engineering, and mathematics.
na

Author: Eduardo Bayro-Corrochano
language: en
Publisher: Springer Science & Business Media
Release Date: 2010-11-20
Geometric algebra provides a rich and general mathematical framework for the development of solutions, concepts and computer algorithms without losing geometric insight into the problem in question. Many current mathematical subjects can be treated in an unified manner without abandoning the mathematical system of geometric algebra, such as multilinear algebra, projective and affine geometry, calculus on manifolds, Riemann geometry, the representation of Lie algebras and Lie groups using bivector algebras, and conformal geometry. Geometric Algebra Computing in Engineering and Computer Science presents contributions from an international selection of experts in the field. This useful text/reference offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. The book also provides an introduction to advanced screw theory and conformal geometry. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Topics and features: Provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework Introduces nonspecialists to screw theory in the geometric algebra framework, offering a tutorial on conformal geometric algebra and an overview of recent applications of geometric algebra Explores new developments in the domain of Clifford Fourier Transforms and Clifford Wavelet Transform, including novel applications of Clifford Fourier transforms for 3D visualization and colour image spectral analysis Presents a detailed study of fluid flow problems with quaternionic analysis Examines new algorithms for geometric neural computing and cognitive systems Analyzes computer software packages for extensive calculations in geometric algebra, investigating the algorithmic complexity of key geometric operations and how the program code can be optimized for real-time computations The book is an essential resource for computer scientists, applied physicists, AI researchers and mechanical and electrical engineers. It will also be of value to graduate students and researchers interested in a modern language for geometric computing. Prof. Dr. Eng. Eduardo Bayro-Corrochano is a Full Professor of Geometric Computing at Cinvestav, Mexico. He is the author of the Springer titles Geometric Computing for Perception Action Systems, Handbook of Geometric Computing, and Geometric Computing for Wavelet Transforms, Robot Vision, Learning, Control and Action. Prof. Dr. Gerik Scheuermann is a Full Professor at the University of Leipzig, Germany. He is the author of the Springer title Topology-Based Methods in Visualization II.