Introduction To Experimental Biophysics

Download Introduction To Experimental Biophysics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Experimental Biophysics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Introduction to Experimental Biophysics

Praise for the First Edition “essential reading for any physical scientist who is interested in performing biological research.” ―Contemporary Physics "an ambitious text.... Each chapter contains protocols and the conceptual reasoning behind them, which is often useful to physicists performing biological experiments for the first time." –Physics Today This fully updated and expanded text is the best starting point for any student or researcher in the physical sciences to gain firm grounding in the techniques employed in molecular biophysics and quantitative biology. It includes brand new chapters on gene expression techniques, advanced techniques in biological light microscopy (super-resolution, two-photon, and fluorescence lifetime imaging), holography, and gold nanoparticles used in medicine. The author shares invaluable practical tips and insider’s knowledge to simplify potentially confusing techniques. The reader is guided through easy-to-follow examples carried out from start to finish with practical tips and insider’s knowledge. The emphasis is on building comfort with getting hands "wet" with basic methods and finally understanding when and how to apply or adapt them to address different questions. Jay L. Nadeau is a scientific researcher and head of the Biomedical Engineering in Advanced Applications of Quantum, Oscillatory, and Nanotechnological Systems (BEAAQONS) lab at Caltech and was previously associate professor of biomedical engineering and physics at McGill University.
Introduction to Experimental Biophysics

Increasing numbers of physicists, chemists, and mathematicians are moving into biology, reading literature across disciplines, and mastering novel biochemical concepts. To succeed in this transition, researchers must understand on a practical level what is experimentally feasible. The number of experimental techniques in biology is vast and often specific to particular subject areas; nonetheless, there are a few basic methods that provide a conceptual underpinning for broad application. Introduction to Experimental Biophysics is the ideal benchtop companion for physical scientists interested in getting their hands wet. Assuming familiarity with basic physics and the scientific method but no previous background in biology or chemistry, this book provides: A thorough description of modern experimental and analytical techniques used in biological and biophysical research Practical information and step-by-step guidance on instrumentation and experimental design Recipes for common solutions and media, lists of important reagents, and a glossary of biological terms used Developed for graduate students in biomedical engineering, physics, chemical engineering, chemistry, mathematics, and computer science, Introduction to Experimental Biophysics is an essential resource for scientists to overcoming conceptual and technical barriers to working in a biology wet lab.
Introduction to Experimental Biophysics

Praise for the First Edition “essential reading for any physical scientist who is interested in performing biological research.” ―Contemporary Physics "an ambitious text.... Each chapter contains protocols and the conceptual reasoning behind them, which is often useful to physicists performing biological experiments for the first time." –Physics Today This fully updated and expanded text is the best starting point for any student or researcher in the physical sciences to gain firm grounding in the techniques employed in molecular biophysics and quantitative biology. It includes brand new chapters on gene expression techniques, advanced techniques in biological light microscopy (super-resolution, two-photon, and fluorescence lifetime imaging), holography, and gold nanoparticles used in medicine. The author shares invaluable practical tips and insider’s knowledge to simplify potentially confusing techniques. The reader is guided through easy-to-follow examples carried out from start to finish with practical tips and insider’s knowledge. The emphasis is on building comfort with getting hands "wet" with basic methods and finally understanding when and how to apply or adapt them to address different questions. Jay L. Nadeau is a scientific researcher and head of the Biomedical Engineering in Advanced Applications of Quantum, Oscillatory, and Nanotechnological Systems (BEAAQONS) lab at Caltech and was previously associate professor of biomedical engineering and physics at McGill University.