Introduction To Electrodynamics For Microwave Linear Accelerators

Download Introduction To Electrodynamics For Microwave Linear Accelerators PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Electrodynamics For Microwave Linear Accelerators book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Frontiers Of Accelerator Technology - Proceedings Of The Joint Us-cern-japan International School

The motivation to conceive and build accelerators comes from a most fundamental need of man — to understand and control the world around us. With beams and their associated accelerators, scientists and engineers can gain understanding of the nature of matter and modify matter, which is not possible by other means. The areas already influenced by the developments in accelerator technology are high energy and nuclear physics, atomic and molecular physics, condensed matter physics and the biological sciences. There are also a growing number of applications in medicine and industry.This book summarizes all the currently available knowledge on the rf technology driving the development of particle beams for science, medicine and industry. It is a unique collection of information on this technology.
Physics and Technology of Linear Accelerator Systems

This book is useful to people working or planning to work in the field of linear accelerators. It is a good reference, presenting the most recent advances in the field. The intended audience are researchers, practitioners, academics and graduate students. The proceedings have been selected for coverage in: . OCo Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings). OCo CC Proceedings OCo Engineering & Physical Sciences."
Introduction to Electrodynamics for Microwave Linear Accelerators

This collection of notes and exercises is intended as a workbook to introduce the principles of microwave linear accelerators, starting with the underlying foundation in electrodynamics. The author reviewed Maxwell's equations, the Lorentz force law, and the behavior of fields near a conducting boundary. The author goes on to develop the principles of microwave electronics, including waveguide modes, circuit equivalence, shunt admittance of an iris, and voltage standing-wave ratio. The author constructed an elementary example of a waveguide coupled to a cavity, and examined its behavior during transient filling of the cavity, and in steady-state. He goes on to examine a periodic line. Then he examined the problem of acceleration in detail, studying first the properties of a single cavity-waveguide-beam system and developing the notions of wall Q, external Q, [R/Q], shunt impedance, and transformer ratio. He then examined the behavior of such a system on and off resonance, on the bench, and under conditions of transient and steady-state beam-loading. This work provides the foundation for the commonly employed circuit equivalents and the basic scalings for such systems. Following this he examined the coupling of two cavities, powered by a single feed, and goes on to consider structures constructed from multiple coupled cavities. The basic scalings for constant impedance and constant gradient traveling-wave structures are set down, including features of steady-state beam-loading, and the coupled-circuit model. Effects of uniform and random detuning are derived. These notes conclude with a brief outline of some problems of current interest in accelerator research.