Introduction To Discrete Event Systems

Download Introduction To Discrete Event Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Discrete Event Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Introduction to Discrete Event Systems

Author: Christos G. Cassandras
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-04-17
A substantial portion of this book is a revised version of Discrete Event Systems: Modeling and Performance Analysis (1993), which was written by the first author and received the 1999 Harold Chestnut Prize, awarded by the International Federation of Automatic Control (IFAC) for best control engineering textbook. This new expanded book is a comprehensive introduction to the field of discrete event systems, emphasizing breadth of coverage and accessibility of the material to readers with different backgrounds. Its key feature is the emphasis placed on a unified modeling framework that transcends specific application areas and allows linking of the following topics in a coherent manner: language and automata theory, supervisory control, Petri net theory, (max,+) algebra, Markov chains and queueing theory, discrete-event simulation, perturbation analysis, and concurrent estimation techniques. Introduction to Discrete Event Systems will be of interest to advanced-level students in a variety of disciplines where the study of discrete event systems is relevant: control, communications, computer engineering, computer science, manufacturing engineering, operations research, and industrial engineering.
Introduction to Discrete Event Systems

Author: Christos G. Cassandras
language: en
Publisher: Springer Nature
Release Date: 2021-11-11
This unique textbook comprehensively introduces the field of discrete event systems, offering a breadth of coverage that makes the material accessible to readers of varied backgrounds. The book emphasizes a unified modeling framework that transcends specific application areas, linking the following topics in a coherent manner: language and automata theory, supervisory control, Petri net theory, Markov chains and queueing theory, discrete-event simulation, and concurrent estimation techniques. Topics and features: detailed treatment of automata and language theory in the context of discrete event systems, including application to state estimation and diagnosis comprehensive coverage of centralized and decentralized supervisory control of partially-observed systems timed models, including timed automata and hybrid automata stochastic models for discrete event systems and controlled Markov chains discrete event simulation an introduction to stochastic hybrid systems sensitivity analysis and optimization of discrete event and hybrid systems new in the third edition: opacity properties, enhanced coverage of supervisory control, overview of latest software tools This proven textbook is essential to advanced-level students and researchers in a variety of disciplines where the study of discrete event systems is relevant: control, communications, computer engineering, computer science, manufacturing engineering, transportation networks, operations research, and industrial engineering. Christos G. Cassandras is Distinguished Professor of Engineering, Professor of Systems Engineering, and Professor of Electrical and Computer Engineering at Boston University. Stéphane Lafortune is Professor of Electrical Engineering and Computer Science at the University of Michigan, Ann Arbor.
Introduction to Discrete Event Systems

Author: Christos G. Cassandras
language: en
Publisher: Springer Science & Business Media
Release Date: 2009-12-14
Introduction to Discrete Event Systems is a comprehensive introduction to the field of discrete event systems, offering a breadth of coverage that makes the material accessible to readers of varied backgrounds. The book emphasizes a unified modeling framework that transcends specific application areas, linking the following topics in a coherent manner: language and automata theory, supervisory control, Petri net theory, Markov chains and queuing theory, discrete-event simulation, and concurrent estimation techniques. This edition includes recent research results pertaining to the diagnosis of discrete event systems, decentralized supervisory control, and interval-based timed automata and hybrid automata models.