Introduction To Data Science With Python


Download Introduction To Data Science With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Data Science With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

An Introduction to Data Science With Python


An Introduction to Data Science With Python

Author: Jeffrey S. Saltz

language: en

Publisher: SAGE Publications

Release Date: 2024-05-29


DOWNLOAD





An Introduction to Data Science with Python by Jeffrey S. Saltz and Jeffery M. Stanton provides readers who are new to Python and data science with a step-by-step walkthrough of the tools and techniques used to analyze data and generate predictive models. After introducing the basic concepts of data science, the book builds on these foundations to explain data science techniques using Python-based Jupyter Notebooks. The techniques include making tables and data frames, computing statistics, managing data, creating data visualizations, and building machine learning models. Each chapter breaks down the process into simple steps and components so students with no more than a high school algebra background will still find the concepts and code intelligible. Explanations are reinforced with linked practice questions throughout to check reader understanding. The book also covers advanced topics such as neural networks and deep learning, the basis of many recent and startling advances in machine learning and artificial intelligence. With their trademark humor and clear explanations, Saltz and Stanton provide a gentle introduction to this powerful data science tool. Included with this title: LMS Cartridge: Import this title’s instructor resources into your school’s learning management system (LMS) and save time. Don′t use an LMS? You can still access all of the same online resources for this title via the password-protected Instructor Resource Site.

Data Science for Beginners


Data Science for Beginners

Author: Prof John Smith

language: en

Publisher: Independently Published

Release Date: 2018-12-12


DOWNLOAD





DATA SCIENCE FOR BEGINNERS Introduction to Data Science: Python,Coding, Application, Statistics,Decision Tree, Neural Network, and Linear Algebra WHAT THIS BOOK WILL DO FOR YOU We will talk about what is the need for data science and then what exactly is data science some definitions and understand. The differences between data science and business intelligence,Then we will talk about the prerequisites for learning data science, and then what does the data scientist do. What are the activities performed by a data scientist as a part of his daily life and then we will talk about the data science lifecycle witha quick example and briefly touch upon the demand or ever-increasing demand for data scientist. Benefits of Data science Data Science: Automobile Data science: Aviation Data science can also be used to make promotional offers. Chapters Data science: Its Advantage Data science: Its Definition Process in data science Difference between business intelligence and data science Prerequisites for data science Machine learning. Data science: Tools and skills in data science. Data Science: Machine-learning algorithms Data science: Life cycle of a data science Data science: Exploratory data analysis Data science: Techniques for exploratory data analysis

Introduction to Data Science


Introduction to Data Science

Author: Laura Igual

language: en

Publisher: Springer

Release Date: 2017-02-22


DOWNLOAD





This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website.