Introduction To Business Statistics Through R Software


Download Introduction To Business Statistics Through R Software PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Business Statistics Through R Software book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Introduction to Business Statistics through R software


Introduction to Business Statistics through R software

Author: Editor IJSMI

language: en

Publisher: International Journal of Statistics and Medical Informatics

Release Date: 2023-07-02


DOWNLOAD





Statistical methods are now widely used in different fields such as Business and Management, Economics, Biological, Physical sciences and including the new fields such as Data Science and Machine Learning. The data which form the basis for the statistical methods helps us to take scientific and informed decisions. Statistical methods deal with the collection, compilation, analysis and making inference from the data. This book deals with the statistical methods which are useful in Business and Management decision making. The methods include Probability, Sampling, Correlation, Regression and Hypothesis Testing, Time Series, Forecasting and Non-Parametric tests and advanced statistical models. The book uses open source R statistical software to carry out different statistical analysis with sample datasets. This book is third in series of Statistics books by the Author. Some of the contents are adopted from the author’s previous statistical book introduction to statistical methods and non-parametric methods.

Statistics for Business


Statistics for Business

Author: Robert Stine

language: en

Publisher: Pearson

Release Date: 2015-08-17


DOWNLOAD





In Statistics for Business: Decision Making and Analysis, authors Robert Stine and Dean Foster of the University of Pennsylvania’s Wharton School, take a sophisticated approach to teaching statistics in the context of making good business decisions. The authors show students how to recognize and understand each business question, use statistical tools to do the analysis, and how to communicate their results clearly and concisely. In addition to providing cases and real data to demonstrate real business situations, this text provides resources to support understanding and engagement. A successful problem-solving framework in the 4-M Examples (Motivation, Method, Mechanics, Message) model a clear outline for solving problems, new What Do You Think questions give students an opportunity to stop and check their understanding as they read, and new learning objectives guide students through each chapter and help them to review major goals. Software Hints provide instructions for using the most up-to-date technology packages. The Second Edition also includes expanded coverage and instruction of Excel® 2010.

An Introduction to Statistical Learning


An Introduction to Statistical Learning

Author: Gareth James

language: en

Publisher: Springer Nature

Release Date: 2023-06-30


DOWNLOAD





An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.