Introduction To Biomedical Data Science


Download Introduction To Biomedical Data Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Biomedical Data Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Introduction to Biomedical Data Science


Introduction to Biomedical Data Science

Author: Robert Hoyt

language: en

Publisher: Lulu.com

Release Date: 2019-11-24


DOWNLOAD





Overview of biomedical data science -- Spreadsheet tools and tips -- Biostatistics primer -- Data visualization -- Introduction to databases -- Big data -- Bioinformatics and precision medicine -- Programming languages for data analysis -- Machine learning -- Artificial intelligence -- Biomedical data science resources -- Appendix A: Glossary -- Appendix B: Using data.world -- Appendix C: Chapter exercises.

An Introduction to Biomedical Science in Professional and Clinical Practice


An Introduction to Biomedical Science in Professional and Clinical Practice

Author: Sarah J. Pitt

language: en

Publisher: John Wiley & Sons

Release Date: 2013-04-03


DOWNLOAD





Biomedical Science in Professional and Clinical Practice is essential reading for all trainee biomedical scientists looking for an introduction to the biomedical science profession whether they are undergraduates following an accredited biomedical sciences BSc, graduate trainees or experienced staff with overseas qualifications. This book guides trainees through the subjects, which they need to understand to meet the standards required by the Health Professions Council for state registration. These include professional topics, laws and guidelines governing clinical pathology, basic laboratory techniques and an overview of each pathology discipline. It helps trainees at any stage of training and in any pathology discipline(s) to think creatively about how to gather evidence of their understanding and professional competence. By referring to specialist sources of information in each area, it helps students to explore particular topics in more depth and to keep up to date with professional and legal changes. It is also of value to any Training Officers who are looking for ideas while planning a programme of training for a trainee biomedical scientist. The book includes basic principles of working in the pathology laboratory including laws and regulations, which must be observed, such as health and safety, data protection and equal opportunities laws and guidelines. Practical exercises are included throughout the book with examples of coursework, suggestions for further exercises and self -assessment. Summary boxes of key facts are clearly set out in each chapter and ideas for group/tutorial discussions are also provided to enhance student understanding.

Machine Learning for Biomedical Applications


Machine Learning for Biomedical Applications

Author: Maria Deprez

language: en

Publisher: Academic Press

Release Date: 2023-09-07


DOWNLOAD





Machine Learning for Biomedical Applications: With Scikit-Learn and PyTorch presents machine learning techniques most commonly used in a biomedical setting. Avoiding a theoretical perspective, it provides a practical and interactive way of learning where concepts are presented in short descriptions followed by simple examples using biomedical data. Interactive Python notebooks are provided with each chapter to complement the text and aid understanding. Sections cover uses in biomedical applications, practical Python coding skills, mathematical tools that underpin the field, core machine learning methods, deep learning concepts with examples in Keras, and much more. This accessible and interactive introduction to machine learning and data analysis skills is suitable for undergraduates and postgraduates in biomedical engineering, computer science, the biomedical sciences and clinicians. - Gives a basic understanding of the most fundamental concepts within machine learning and their role in biomedical data analysis. - Shows how to apply a range of commonly used machine learning and deep learning techniques to biomedical problems. - Develops practical computational skills needed to implement machine learning and deep learning models for biomedical data sets. - Shows how to design machine learning experiments that address specific problems related to biomedical data