Introduction To Algebraic Geometry And Commutative Algebra

Download Introduction To Algebraic Geometry And Commutative Algebra PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Algebraic Geometry And Commutative Algebra book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Introduction to Commutative Algebra and Algebraic Geometry

Author: Ernst Kunz
language: en
Publisher: Springer Science & Business Media
Release Date: 1985
It has been estimated that, at the present stage of our knowledge, one could give a 200 semester course on commutative algebra and algebraic geometry without ever repeating himself. So any introduction to this subject must be highly selective. I first want to indicate what point of view guided the selection of material for this book. This introduction arose from lectures for students who had taken a basic course in algebra and could therefore be presumed to have a knowledge of linear algebra, ring and field theory, and Galois theory. The present text shouldn't require much more. In the lectures and in this text I have undertaken with the fewest possible auxiliary means to lead up to some recent results of commutative algebra and algebraic geometry concerning the representation of algebraic varieties as in tersections of the least possible number of hypersurfaces and- a closely related problem-with the most economical generation of ideals in Noetherian rings. The question of the equations needed to describe an algebraic variety was addressed by Kronecker in 1882. In the 1940s it was chiefly Perron who was interested in this question; his discussions with Severi made the problem known and contributed to sharpening the rei event concepts. Thanks to the general progress of commutative algebra many beautiful results in this circle of questions have been obtained, mainly after the solution of Serre's problem on projective modules. Because of their relatively elementary character they are especially suitable for an introduction to commutative algebra.
Algebraic Geometry and Commutative Algebra

Author: Siegfried Bosch
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-11-15
Algebraic geometry is a fascinating branch of mathematics that combines methods from both, algebra and geometry. It transcends the limited scope of pure algebra by means of geometric construction principles. Moreover, Grothendieck’s schemes invented in the late 1950s allowed the application of algebraic-geometric methods in fields that formerly seemed to be far away from geometry, like algebraic number theory. The new techniques paved the way to spectacular progress such as the proof of Fermat’s Last Theorem by Wiles and Taylor. The scheme-theoretic approach to algebraic geometry is explained for non-experts. More advanced readers can use the book to broaden their view on the subject. A separate part deals with the necessary prerequisites from commutative algebra. On a whole, the book provides a very accessible and self-contained introduction to algebraic geometry, up to a quite advanced level. Every chapter of the book is preceded by a motivating introduction with an informal discussion of the contents. Typical examples and an abundance of exercises illustrate each section. This way the book is an excellent solution for learning by yourself or for complementing knowledge that is already present. It can equally be used as a convenient source for courses and seminars or as supplemental literature.
Introduction to Algebraic Geometry and Commutative Algebra

Along the lines developed by Grothendieck, this book delves into the rich interplay between algebraic geometry and commutative algebra. With concise yet clear definitions and synopses a selection is made from the wealth of meterial in the disciplines including the Riemann-Roch theorem for arbitrary projective curves."--pub. desc.