Introduction To Aeronautics A Design Perspective Pdf


Download Introduction To Aeronautics A Design Perspective Pdf PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Aeronautics A Design Perspective Pdf book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Introduction to Aeronautics


Introduction to Aeronautics

Author: Steven A. Brandt

language: en

Publisher: AIAA

Release Date: 2004


DOWNLOAD





This text and the accompanying AeroDYNAMIC software are designed for use in teaching basic design methods in an introductory course on aeronautics. Brandt (aeronautics, US Air Force Academy) devotes the first chapter of the text to methods of engineering and aircraft design, then covers basic aeronautical engineering methods used in each step of the design process. Final chapters explain how all of the methods are used in the conceptual aircraft design process and present case studies of the development of three well-known aircraft designs. Previous courses in calculus, classical physics, and engineering mechanics are assumed. Annotation : 2004 Book News, Inc., Portland, OR (booknews.com).

Aircraft Design Projects


Aircraft Design Projects

Author: Lloyd R. Jenkinson

language: en

Publisher: Elsevier

Release Date: 2003-04-28


DOWNLOAD





Written with students of aerospace or aeronautical engineering firmly in mind, this is a practical and wide-ranging book that draws together the various theoretical elements of aircraft design - structures, aerodynamics, propulsion, control and others - and guides the reader in applying them in practice. Based on a range of detailed real-life aircraft design projects, including military training, commercial and concept aircraft, the experienced UK and US based authors present engineering students with an essential toolkit and reference to support their own project work.All aircraft projects are unique and it is impossible to provide a template for the work involved in the design process. However, with the knowledge of the steps in the initial design process and of previous experience from similar projects, students will be freer to concentrate on the innovative and analytical aspects of their course project. The authors bring a unique combination of perspectives and experience to this text. It reflects both British and American academic practices in teaching aircraft design. Lloyd Jenkinson has taught aircraft design at both Loughborough and Southampton universities in the UK and Jim Marchman has taught both aircraft and spacecraft design at Virginia Tech in the US.* Demonstrates how basic aircraft design processes can be successfully applied in reality* Case studies allow both student and instructor to examine particular design challenges * Covers commercial and successful student design projects, and includes over 200 high quality illustrations

Collaborative Multidisciplinary Design Optimization for Conceptual Design of Complex Products


Collaborative Multidisciplinary Design Optimization for Conceptual Design of Complex Products

Author: Edris Safavi

language: en

Publisher: Linköping University Electronic Press

Release Date: 2016-10-06


DOWNLOAD





MULTIDESCIPLINARY design optimization (MDO) has developed in theory andpractice during the last three decades with the aim of optimizing complexproducts as well as cutting costs and product development time. Despite thisdevelopment, the implementation of such a method in industry is still a challenge andmany complex products suffer time and cost overruns. Employing higher fidelity models (HFMs) in conceptual design, one of the early and most important phases in the design process, can play an important role in increasing the knowledge base regarding the concept under evaluation. However, design space in the presence of HFMs could significantly be expanded. MDO has proven to be an important tool for searching the design space and finding optimal solutions. This leads to a reduction in the number of design iterations later in the design process, with wiser and more robust decisions made early in the design process to rely on. In complex products, different systems from a multitude of engineering disciplines have to work tightly together. This stresses the importance of evolving various domain experts in the design process to improve the design from diverse engineering perspectives. Involving more engineers in the design process early on raises the challenges of collaboration, known to be an important barrier to MDO implementation in industry. Another barrier is the unavailability and lack of MDO experts in industry; those who understand the MDO process and know the implementation tasks involved. In an endeavor to address the mentioned implementation challenges, a novel collaborative multidisciplinary design optimization (CMDO) framework is defined in order to be applied in the conceptual design phase. CMDO provides a platform where many engineers team up to increase the likelihood of more accurate decisions being taken early on. The structured way to define the engineering responsibilities and tasks involved in MDO helps to facilitate the implementation process. It will be further elaborated that educating active engineers with MDO knowledge is an expensive and time-consuming process for industries. Therefore, a guideline for CMDO implementation in conceptual design is proposed in this thesis that can be easily followed by design engineers with limited prior knowledge in MDO. The performance of the framework is evaluated in a number of case studies, including applications such as aircraft design and the design of a tidal water power plant, and by engineers in industry and student groups in academia.