Introduction To Abelian Model Structures And Gorenstein Homological Dimensions

Download Introduction To Abelian Model Structures And Gorenstein Homological Dimensions PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Abelian Model Structures And Gorenstein Homological Dimensions book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Introduction to Abelian Model Structures and Gorenstein Homological Dimensions

This book provides a starting point to study the relationship between homological and homotopical algebra. It shows how to obtain new model structures in homological algebra by constructing a pair of compatible complete cotorsion pairs related to a specific homological dimension and then applying the Hovey Correspondence to generate an abelian model structure. The book presents new results in relative homological algebra and model category theory, re-proves some established results, and proves folklore results that are difficult to find in the literature.
Introduction to Abelian Model Structures and Gorenstein Homological Dimensions

Introduction to Abelian Model Structures and Gorenstein Homological Dimensions provides a starting point to study the relationship between homological and homotopical algebra, a very active branch of mathematics. The book shows how to obtain new model structures in homological algebra by constructing a pair of compatible complete cotorsion pairs related to a specific homological dimension and then applying the Hovey Correspondence to generate an abelian model structure. The first part of the book introduces the definitions and notations of the universal constructions most often used in category theory. The next part presents a proof of the Eklof and Trlifaj theorem in Grothedieck categories and covers M. Hovey’s work that connects the theories of cotorsion pairs and model categories. The final two parts study the relationship between model structures and classical and Gorenstein homological dimensions and explore special types of Grothendieck categories known as Gorenstein categories. As self-contained as possible, this book presents new results in relative homological algebra and model category theory. The author also re-proves some established results using different arguments or from a pedagogical point of view. In addition, he proves folklore results that are difficult to locate in the literature.
Analytical Methods for Kolmogorov Equations

The second edition of this book has a new title that more accurately reflects the table of contents. Over the past few years, many new results have been proven in the field of partial differential equations. This edition takes those new results into account, in particular the study of nonautonomous operators with unbounded coefficients, which has received great attention. Additionally, this edition is the first to use a unified approach to contain the new results in a singular place.