Introduction And Fundamental Concepts Of Machine Learning


Download Introduction And Fundamental Concepts Of Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction And Fundamental Concepts Of Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Understanding Machine Learning


Understanding Machine Learning

Author: Shai Shalev-Shwartz

language: en

Publisher: Cambridge University Press

Release Date: 2014-05-19


DOWNLOAD





Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Hands-On Machine Learning with R


Hands-On Machine Learning with R

Author: Brad Boehmke

language: en

Publisher: CRC Press

Release Date: 2019-11-07


DOWNLOAD





Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.

Understanding the Fundamentals of Machine Learning and AI for Digital Business


Understanding the Fundamentals of Machine Learning and AI for Digital Business

Author: Andy Ismail

language: en

Publisher: Asadel Publisher

Release Date: 2023-06-04


DOWNLOAD





"Understanding the Fundamentals of Machine Learning and AI for Digital Business" is a comprehensive guide that provides a solid foundation in the concepts and applications of machine learning and artificial intelligence. This book covers a wide range of topics, from the history and understanding of machine learning to its purpose and application in the digital business landscape. Starting with the basics, readers will gain a clear understanding of supervised learning, unsupervised learning, and reinforcement learning. They will explore evaluation methods such as accuracy, precision, recall, F1 score, and ROC-AUC, and learn how to assess the performance of machine learning models. The book delves into regression analysis, covering important techniques like polynomial regression, ridge regression, lasso regression, and vector regression. It also explores classification methods, including Naive Bayes, K-Nearest Neighbors (KNN), decision trees, random forest, and support vector machines. Readers will gain insights into clustering techniques like K-means, hierarchical clustering, and density-based clustering. They will also explore the fascinating world of deep learning, including convolutional neural networks (CNN), recurrent neural networks (RNN), long short-term memory (LSTM), and natural language processing (NLP) techniques like tokenization, stemming, and lemmatization. The book provides practical exercises throughout, allowing readers to apply their knowledge and reinforce their understanding. It covers topics such as dealing with violations of assumptions, model selection and validation, and advanced regression techniques. Ethical considerations in machine learning and AI are also addressed, highlighting the importance of responsible and ethical practices in the digital business environment. With its comprehensive coverage and practical exercises, "Understanding the Fundamentals of Machine Learning and AI for Digital Business" is an essential resource for students, professionals, and anyone interested in harnessing the power of machine learning and AI in the digital era. It offers a solid foundation in theory and practical applications, equipping readers with the skills to navigate the evolving landscape of machine learning and AI and drive digital business success.