Introducing Quantum Mechanics One Particle Interferences

Download Introducing Quantum Mechanics One Particle Interferences PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introducing Quantum Mechanics One Particle Interferences book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Introduction to Quantum Mechanics

Introduction to Quantum Mechanics is an introduction to the power and elegance of quantum mechanics. Assuming little in the way of prior knowledge, quantum concepts are carefully and precisely presented, and explored through numerous applications and problems. Some of the more challenging aspects that are essential for a modern appreciation of the subject have been included, but are introduced and developed in the simplest way possible. Undergraduates taking a first course on quantum mechanics will find this text an invaluable introduction to the field and help prepare them for more advanced courses. Introduction to Quantum Mechanics: * Starts from basics, reviewing relevant concepts of classical physics where needed. * Motivates by considering weird behaviour of quantum particles. * Presents mathematical arguments in their simplest form.
Testing Quantum Theory with Higher-Order Interference in Many-Particle Correlations

Author: Marc-Oliver Pleinert
language: en
Publisher: Springer Nature
Release Date: 2022-05-18
The structure of quantum theory permits interference of indistinguishable paths. At the same time, however, it also limits such interference to certain orders and any higher-order interference is prohibited. This thesis develops and studies concepts to test quantum theory with higher-order interference using many-particle correlations, the latter being generally richer and typically more subtle than single-particle correlations. It is demonstrated that quantum theory in general allows for interference up to order 2M in M-particle correlations. Depending on the mutual coherence of the particles, however, the related interference hierarchy can terminate earlier. In this thesis, we show that mutually coherent particles can exhibit interference of the highest orders allowed. We further demonstrate that interference of mutually incoherent particles truncates already at order M+1, although interference of the latter is principally more multifaceted than their coherent counterpart. We introduce two families of many-particle Sorkin parameters, whose members are expected to be all zero when quantum mechanics holds. As proof of concept, we demonstrate the disparate vanishing of such higher-order interference terms as a function of coherence in experiments with mutually coherent and incoherent sources. Finally, we investigate the influence of exotic kinked or looped quantum paths, which are permitted by Feynman’s path integral approach, in such setups.
A Trajectory Description of Quantum Processes. I. Fundamentals

Trajectory-based formalisms are an intuitively appealing way of describing quantum processes because they allow the use of "classical" concepts. Beginning at an introductory level suitable for students, this two-volume monograph presents (1) the fundamentals and (2) the applications of the trajectory description of basic quantum processes. This first volume is focussed on the classical and quantum background necessary to understand the fundamentals of Bohmian mechanics, which can be considered the main topic of this work. Extensions of the formalism to the fields of open quantum systems and to optics are also proposed and discussed.