Intersections Of Random Walks


Download Intersections Of Random Walks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Intersections Of Random Walks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Intersections of Random Walks


Intersections of Random Walks

Author: Gregory F. Lawler

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-06-29


DOWNLOAD





A more accurate title for this book would be "Problems dealing with the non-intersection of paths of random walks. " These include: harmonic measure, which can be considered as a problem of nonintersection of a random walk with a fixed set; the probability that the paths of independent random walks do not intersect; and self-avoiding walks, i. e. , random walks which have no self-intersections. The prerequisite is a standard measure theoretic course in probability including martingales and Brownian motion. The first chapter develops the facts about simple random walk that will be needed. The discussion is self-contained although some previous expo sure to random walks would be helpful. Many of the results are standard, and I have made borrowed from a number of sources, especially the ex cellent book of Spitzer [65]. For the sake of simplicity I have restricted the discussion to simple random walk. Of course, many of the results hold equally well for more general walks. For example, the local central limit theorem can be proved for any random walk whose increments have mean zero and finite variance. Some of the later results, especially in Section 1. 7, have not been proved for very general classes of walks. The proofs here rely heavily on the fact that the increments of simple random walk are bounded and symmetric.

Intersections of Random Walks


Intersections of Random Walks

Author: Gregoyr Lawler

language: en

Publisher: Birkhäuser

Release Date: 2012-07-02


DOWNLOAD





A more accurate title for this book would be "Problems dealing with the non-intersection of paths of random walks. " These include: harmonic measure, which can be considered as a problem of nonintersection of a random walk with a fixed set; the probability that the paths of independent random walks do not intersect; and self-avoiding walks, i. e. , random walks which have no self-intersections. The prerequisite is a standard measure theoretic course in probability including martingales and Brownian motion. The first chapter develops the facts about simple random walk that will be needed. The discussion is self-contained although some previous expo sure to random walks would be helpful. Many of the results are standard, and I have made borrowed from a number of sources, especially the ex cellent book of Spitzer [65]. For the sake of simplicity I have restricted the discussion to simple random walk. Of course, many of the results hold equally well for more general walks. For example, the local central limit theorem can be proved for any random walk whose increments have mean zero and finite variance. Some of the later results, especially in Section 1. 7, have not been proved for very general classes of walks. The proofs here rely heavily on the fact that the increments of simple random walk are bounded and symmetric.

Intersections of Random Walks


Intersections of Random Walks

Author: Parkpoom Phetpradap

language: en

Publisher:

Release Date: 2011


DOWNLOAD





We study the large deviation behaviour of simple random walks in dimension three or more in this thesis. The first part of the thesis concerns the number of lattice sites visited by the random walk. We call this the range of the random walk. We derive a large deviation principle for the probability that the range of simple random walk deviates from its mean. Our result describes the behaviour for deviation below the typical value. This is a result analogous to that obtained by van den Berg, Bolthausen, and den Hollander for the volume of the Wiener sausage. In the second part of the thesis, we are interested in the number of lattice sites visited by two independent simple random walks starting at the origin. We call this the intersection of ranges. We derive a large deviation principle for the probability that the intersection of ranges by time n exceeds a multiple of n. This is also an analogous result of the intersection volume of two independent Wiener sausages.