Interpretable And Annotation Efficient Learning For Medical Image Computing

Download Interpretable And Annotation Efficient Learning For Medical Image Computing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Interpretable And Annotation Efficient Learning For Medical Image Computing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Interpretable and Annotation-Efficient Learning for Medical Image Computing

This book constitutes the refereed joint proceedings of the Third International Workshop on Interpretability of Machine Intelligence in Medical Image Computing, iMIMIC 2020, the Second International Workshop on Medical Image Learning with Less Labels and Imperfect Data, MIL3ID 2020, and the 5th International Workshop on Large-scale Annotation of Biomedical data and Expert Label Synthesis, LABELS 2020, held in conjunction with the 23rd International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2020, in Lima, Peru, in October 2020. The 8 full papers presented at iMIMIC 2020, 11 full papers to MIL3ID 2020, and the 10 full papers presented at LABELS 2020 were carefully reviewed and selected from 16 submissions to iMIMIC, 28 to MIL3ID, and 12 submissions to LABELS. The iMIMIC papers focus on introducing the challenges and opportunities related to the topic of interpretability of machine learning systems in the context of medical imaging and computer assisted intervention. MIL3ID deals with best practices in medical image learning with label scarcity and data imperfection. The LABELS papers present a variety of approaches for dealing with a limited number of labels, from semi-supervised learning to crowdsourcing.
State of the Art in Neural Networks and Their Applications

State of the Art in Neural Networks and Their Applications, Volume Two presents the latest advances in artificial neural networks and their applications across a wide range of clinical diagnoses. The book provides over views and case studies of advances in the role of machine learning, artificial intelligence, deep learning, cognitive image processing, and suitable data analytics useful for clinical diagnosis and research applications. The application of neural network, artificial intelligence and machine learning methods in biomedical image analysis have resulted in the development of computer-aided diagnostic (CAD) systems that aim towards the automatic early detection of several severe diseases. State of the Art in Neural Networks and Their Applications is presented in two volumes. Volume One: Neural Networks in Oncology Imaging covers lung cancer, prostate cancer, and bladder cancer. Volume Two: Neural Networks in Brain Disorders and Other Diseases covers autism spectrum disorder, Alzheimer's disease, attention deficit hyperactivity disorder, hypertension, and other diseases. Written by experienced engineers in the field, these two volumes will help engineers, computer scientists, researchers, and clinicians understand the technology and applications of artificial neural networks. - Includes applications of neural networks, AI, machine learning, and deep learning techniques to a variety of oncology imaging technologies - Provides in-depth technical coverage of computer-aided diagnosis (CAD), including coverage of computer-aided classification, unified deep learning frameworks, 3D MRI, PET/CT, and more - Covers deep learning cancer identification from histopathological images, medical image analysis, detection, segmentation and classification via AI
A Beginner's Guide to Medical Application Development with Deep Convolutional Neural Networks

This book serves as a source of introductory material and reference for medical application development and related technologies by providing the detailed implementation of cutting-edge deep learning methodologies. It targets cloud-based advanced medical application developments using open-source Python-based deep learning libraries. It includes code snippets and sophisticated convolutional neural networks to tackle real-world problems in medical image analysis and beyond. Features: Provides programming guidance for creation of sophisticated and reliable neural networks for image processing. Incorporates the comparative study on GAN, stable diffusion, and its application on medical image data augmentation. Focuses on solving real-world medical imaging problems. Discusses advanced concepts of deep learning along with the latest technology such as GPT, stable diffusion, and ViT. Develops applicable knowledge of deep learning using Python programming, followed by code snippets and OOP concepts. This book is aimed at graduate students and researchers in medical data analytics, medical image analysis, signal processing, and deep learning.