Intermediate Statistics And Econometrics

Download Intermediate Statistics And Econometrics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Intermediate Statistics And Econometrics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Intermediate Statistics and Econometrics

The standard introductory texts to mathematical statistics leave the Bayesian approach to be taught later in advanced topics courses-giving students the impression that Bayesian statistics provide but a few techniques appropriate in only special circumstances. Nothing could be further from the truth, argues Dale Poirier, who has developed a course for teaching comparatively both the classical and the Bayesian approaches to econometrics. Poirier's text provides a thoroughly modern, self-contained, comprehensive, and accessible treatment of the probability and statistical foundations of econometrics with special emphasis on the linear regression model. Written primarily for advanced undergraduate and graduate students who are pursuing research careers in economics, Intermediate Statistics and Econometrics offers a broad perspective, bringing together a great deal of diverse material. Its comparative approach, emphasis on regression and prediction, and numerous exercises and references provide a solid foundation for subsequent courses in econometrics and will prove a valuable resource to many nonspecialists who want to update their quantitative skills. The introduction closes with an example of a real-world data set-the Challengerspace shuttle disaster-that motivates much of the text's theoretical discussion. The ten chapters that follow cover basic concepts, special distributions, distributions of functions of random variables, sampling theory, estimation, hypothesis testing, prediction, and the linear regression model. Appendixes contain a review of matrix algebra, computation, and statistical tables.
Fundamental Statistical Inference

Author: Marc S. Paolella
language: en
Publisher: John Wiley & Sons
Release Date: 2018-06-19
A hands-on approach to statistical inference that addresses the latest developments in this ever-growing field This clear and accessible book for beginning graduate students offers a practical and detailed approach to the field of statistical inference, providing complete derivations of results, discussions, and MATLAB programs for computation. It emphasizes details of the relevance of the material, intuition, and discussions with a view towards very modern statistical inference. In addition to classic subjects associated with mathematical statistics, topics include an intuitive presentation of the (single and double) bootstrap for confidence interval calculations, shrinkage estimation, tail (maximal moment) estimation, and a variety of methods of point estimation besides maximum likelihood, including use of characteristic functions, and indirect inference. Practical examples of all methods are given. Estimation issues associated with the discrete mixtures of normal distribution, and their solutions, are developed in detail. Much emphasis throughout is on non-Gaussian distributions, including details on working with the stable Paretian distribution and fast calculation of the noncentral Student's t. An entire chapter is dedicated to optimization, including development of Hessian-based methods, as well as heuristic/genetic algorithms that do not require continuity, with MATLAB codes provided. The book includes both theory and nontechnical discussions, along with a substantial reference to the literature, with an emphasis on alternative, more modern approaches. The recent literature on the misuse of hypothesis testing and p-values for model selection is discussed, and emphasis is given to alternative model selection methods, though hypothesis testing of distributional assumptions is covered in detail, notably for the normal distribution. Presented in three parts—Essential Concepts in Statistics; Further Fundamental Concepts in Statistics; and Additional Topics—Fundamental Statistical Inference: A Computational Approach offers comprehensive chapters on: Introducing Point and Interval Estimation; Goodness of Fit and Hypothesis Testing; Likelihood; Numerical Optimization; Methods of Point Estimation; Q-Q Plots and Distribution Testing; Unbiased Point Estimation and Bias Reduction; Analytic Interval Estimation; Inference in a Heavy-Tailed Context; The Method of Indirect Inference; and, as an appendix, A Review of Fundamental Concepts in Probability Theory, the latter to keep the book self-contained, and giving material on some advanced subjects such as saddlepoint approximations, expected shortfall in finance, calculation with the stable Paretian distribution, and convergence theorems and proofs.
Bayesian Econometric Methods

Author: Joshua Chan
language: en
Publisher: Cambridge University Press
Release Date: 2019-08-15
Illustrates Bayesian theory and application through a series of exercises in question and answer format.