Inter Rater Reliability Essentials Practical Guide In R


Download Inter Rater Reliability Essentials Practical Guide In R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Inter Rater Reliability Essentials Practical Guide In R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Handbook of Inter-Rater Reliability, 4th Edition


Handbook of Inter-Rater Reliability, 4th Edition

Author: Kilem L. Gwet

language: en

Publisher: Advanced Analytics, LLC

Release Date: 2014-09-07


DOWNLOAD





The third edition of this book was very well received by researchers working in many different fields of research. The use of that text also gave these researchers the opportunity to raise questions, and express additional needs for materials on techniques poorly covered in the literature. For example, when designing an inter-rater reliability study, many researchers wanted to know how to determine the optimal number of raters and the optimal number of subjects that should participate in the experiment. Also, very little space in the literature has been devoted to the notion of intra-rater reliability, particularly for quantitative measurements. The fourth edition of this text addresses those needs, in addition to further refining the presentation of the material already covered in the third edition. Features of the Fourth Edition include: New material on sample size calculations for chance-corrected agreement coefficients, as well as for intraclass correlation coefficients. The researcher will be able to determine the optimal number raters, subjects, and trials per subject.The chapter entitled “Benchmarking Inter-Rater Reliability Coefficients” has been entirely rewritten.The introductory chapter has been substantially expanded to explore possible definitions of the notion of inter-rater reliability.All chapters have been revised to a large extent to improve their readability.

R Graphics Essentials for Great Data Visualization


R Graphics Essentials for Great Data Visualization

Author: Alboukadel Kassambara

language: en

Publisher: STHDA

Release Date: 2017-11-14


DOWNLOAD





Data visualization is one of the most important part of data science. Many books and courses present a catalogue of graphics but they don't teach you which charts to use according to the type of the data. In this book, we start by presenting the key graphic systems and packages available in R, including R base graphs, lattice and ggplot2 plotting systems. Next, we provide more than 200 practical examples to create great graphics for the right data using either the ggplot2 package and extensions or the traditional R graphics. With this book, you 'll learn: - How to quickly create beautiful graphics using ggplot2 packages - How to properly customize and annotate the plots - Type of graphics for visualizing categorical and continuous variables - How to add automatically p-values to box plots, bar plots and alternatives - How to add marginal density plots and correlation coefficients to scatter plots - Key methods for analyzing and visualizing multivariate data - R functions and packages for plotting time series data - How to combine multiple plots on one page to create production-quality figures.

Machine Learning Essentials


Machine Learning Essentials

Author: Alboukadel Kassambara

language: en

Publisher: STHDA

Release Date: 2018-03-10


DOWNLOAD





Discovering knowledge from big multivariate data, recorded every days, requires specialized machine learning techniques. This book presents an easy to use practical guide in R to compute the most popular machine learning methods for exploring real word data sets, as well as, for building predictive models. The main parts of the book include: A) Unsupervised learning methods, to explore and discover knowledge from a large multivariate data set using clustering and principal component methods. You will learn hierarchical clustering, k-means, principal component analysis and correspondence analysis methods. B) Regression analysis, to predict a quantitative outcome value using linear regression and non-linear regression strategies. C) Classification techniques, to predict a qualitative outcome value using logistic regression, discriminant analysis, naive bayes classifier and support vector machines. D) Advanced machine learning methods, to build robust regression and classification models using k-nearest neighbors methods, decision tree models, ensemble methods (bagging, random forest and boosting). E) Model selection methods, to select automatically the best combination of predictor variables for building an optimal predictive model. These include, best subsets selection methods, stepwise regression and penalized regression (ridge, lasso and elastic net regression models). We also present principal component-based regression methods, which are useful when the data contain multiple correlated predictor variables. F) Model validation and evaluation techniques for measuring the performance of a predictive model. G) Model diagnostics for detecting and fixing a potential problems in a predictive model. The book presents the basic principles of these tasks and provide many examples in R. This book offers solid guidance in data mining for students and researchers. Key features: - Covers machine learning algorithm and implementation - Key mathematical concepts are presented - Short, self-contained chapters with practical examples.