Intelligent Systems In Oil Field Development Under Uncertainty


Download Intelligent Systems In Oil Field Development Under Uncertainty PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Intelligent Systems In Oil Field Development Under Uncertainty book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Intelligent Systems in Oil Field Development under Uncertainty


Intelligent Systems in Oil Field Development under Uncertainty

Author: Marco A. C. Pacheco

language: en

Publisher: Springer Science & Business Media

Release Date: 2009-04-27


DOWNLOAD





The decision to invest in oil field development is an extremely complex problem, even in the absence of uncertainty, due to the great number of technological alternatives that may be used, to the dynamic complexity of oil reservoirs - which involves mul- phase flows (oil, gas and water) in porous media with phase change, and to the c- plicated combinatorial optimization problem of choosing the optimal oil well network, that is, choosing the number and types of wells (horizontal, vertical, directional, m- tilateral) required for draining oil from a field with a view to maximizing its economic value. This problem becomes even more difficult when technical uncertainty and e- nomic uncertainty are considered. The former are uncertainties regarding the existence, volume and quality of a reservoir and may encourage an investment in information before the field is developed, in order to reduce these uncertainties and thus optimize the heavy investments required for developing the reservoir. The economic or market uncertainties are associated with the general movements of the economy, such as oil prices, gas demand, exchange rates, etc. , and may lead decision-makers to defer - vestments and wait for better market conditions. Choosing the optimal investment moment under uncertainty is a complex problem which traditionally involves dynamic programming tools and other techniques that are used by the real options theory.

Soft Computing Based Modeling in Intelligent Systems


Soft Computing Based Modeling in Intelligent Systems

Author: Valentina Emilia Balas

language: en

Publisher: Springer

Release Date: 2009-03-03


DOWNLOAD





The book “Soft Computing Based Modeling in Intelligent Systems”contains the - tended works originally presented at the IEEE International Workshop SOFA 2005 and additional papers. SOFA, an acronym for SOFt computing and Applications, is an international wo- shop intended to advance the theory and applications of intelligent systems and soft computing. Lotfi Zadeh, the inventor of fuzzy logic, has suggested the term “Soft Computing.” He created the Berkeley Initiative of Soft Computing (BISC) to connect researchers working in these new areas of AI. Professor Zadeh participated actively in our wo- shop. Soft Computing techniques are tolerant to imprecision, uncertainty and partial truth. Due to the large variety and complexity of the domain, the constituting methods of Soft Computing are not competing for a comprehensive ultimate solution. Instead they are complementing each other, for dedicated solutions adapted to each specific pr- lem. Hundreds of concrete applications are already available in many domains. Model based approaches offer a very challenging way to integrate a priori knowledge into procedures. Due to their flexibility, robustness, and easy interpretability, the soft c- puting applications will continue to have an exceptional role in our technologies. The applications of Soft Computing techniques in emerging research areas show its mat- ity and usefulness. The IEEE International Workshop SOFA 2005 held Szeged-Hungary and Arad- Romania in 2005 has led to the publication of these two edited volumes. This volume contains Soft Computing methods and applications in modeling, optimisation and prediction.

Hybrid Artificial Intelligent Systems


Hybrid Artificial Intelligent Systems

Author: Emilio S. Corchado Rodriguez

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-03-21


DOWNLOAD





The two LNAI volumes 7208 and 7209 constitute the proceedings of the 7th International Conference on Hybrid Artificial Intelligent Systems, HAIS 2012, held in Salamanca, Spain, in March 2012. The 118 papers published in these proceedings were carefully reviewed and selected from 293 submissions. They are organized in topical sessions on agents and multi agents systems, HAIS applications, cluster analysis, data mining and knowledge discovery, evolutionary computation, learning algorithms, systems, man, and cybernetics by HAIS workshop, methods of classifier fusion, HAIS for computer security (HAISFCS), data mining: data preparation and analysis, hybrid artificial intelligence systems in management of production systems, hybrid artificial intelligent systems for ordinal regression, hybrid metaheuristics for combinatorial optimization and modelling complex systems, hybrid computational intelligence and lattice computing for image and signal processing and nonstationary models of pattern recognition and classifier combinations.